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Exercises for Chapter 1

0 1Yy4 -2 4 8
C(A4+B)= = .
5 8)l4 8 52 54
6 1 -2 7 4 8
CA= , CB= , CA+CB= .
58 -17 -6 71 52 54

w3 2 (5

, 2 5\ 2 3 14 -29
(i) AB= = )
6 1)\-2 7 10 25
2 3\(2 -5 22 -7
BA= =
e TG
14 -29)\(0 1 —-145 -218
[10 25}[5 8} (125 210}
15 26\(2 -5 186 —49
BCA= =
[35 54}[6 lj [394 —121}

0 1)\14 -29 10 25
CAB = = :

5 8)I10 25 150 55
Clearly AB and BA are not the same.

(i) trdB =14+25=39

trBA =22+17 =39



(i)

trABC =-145+210=65
trBC4 =186-121=065

trCAB =10+55=65.

1 4 2
1 3 7 16 12 41
AB = -2 5 -1|= .
5 08 29 12 58
3 -1 6

As Bis 3x3 and 4 is2x3, BA does not exist.

16 29
(4B) =|12 12

41 58

1 -2 3)(1 5) (16 29
BA=|4 5 -1|[3 0|=|12 12

2 -1 6)l7 8) |41 58

1 5
, (1 37 59 6l
AA' = 3 0= ,
5 08 61 89
7 8

which is clearly symmetric.
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1 -3 -4)\-1 3 5 0 00

-1 3 5\ 2 -3 -5 0 00

B4=| 1 -3 -5|-1 4 5|=/0 0 O
-1 3 5 1 -3 -4 0 00

Both AB and BA equal the 3 x 3 null matrix.



(v) (@) A'ACB = A'AB fromii
=A4'0 fromi
=0.
(b) (4-B)" =(4-B)(4-B)
= A’ -~ AB-BA+B’

= A*+B* fromi.

4. Asquare matrix A is symmetric idempotent if 4’'= A and 4> =

() A=@{i)/n=30)i/n=A
B =(1-A)=1-4'=B.

o ofe of
AA:%:Aasi'izn.
n

BB=(1-4) =1-24+ 4 =B.
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.. .
trd=tr =t =1,
n n

trtB=tr(I-A)=ttl —trtAd=n—1.

(i) Ax=iix/n.

xl
Now ix=(1...1)] : |=x+...+x,.
xn
x
Hence Ax =ix =| : | where )_C:Zx,./n,soAxisan nx1 vector where elements are x. Now
f i=1
X, =X
Bx=(I-A)x=x-Ax=| { |, so Bx isan nxI vector where fth elementis x, —x.
X, —x
1.2
1. |4|=-6, |B|=18+4=22,
2 -4
|4B| = =—148+16=—-132.
4 74
-1 5
4| = =—6
0 6
2 -1
|B| = =18+4=22.
4 9
4 1 6 4 1 6
2. |4=]7 2 9 = |-1 0 -3

3 0 §7n72M 3 o g



Expanding using the second column we have

1+2

=11

- 1(-8+9)=—1
38 -

Similarly,

4.7 3 |4 -1 3
|4|=]1 2 0/=1 0 0=-I.
6 9 8 |6 -3 8

1 2 3 25
0O 0 0 7
34, = 1 2 3 3
nL=r—n
3 -1 1 =2

Expanding using the second row we have

1 23 o 0o
|4|=7¢-1"*]1 2 3/=7]1 2 3|=0.
3.1 1 3 -1 1
2130
3210
B = =0
ci=c,~3¢,|1 3 0 0
2410

!

(4 2 41 L4
1oAdd= 5 and |4|=4+2=6. Hence 4™ =~ :

612 1

>
&
>3]
1
TN
S 0
[
N W
N7
1

8 0 8 0
and |B|=-16. Hence B™' = L .
-5 -2 l6\ -5 -2

2 N B



, 32 -16) (32 8 L1 328
Adj(4B) = e 71716 and |4B|=-96 so (4B) ==%| _16 7

2 1 0
1
2. 4 = 6 2 6=6(-1)" 3 6‘:—6, so A is nonsingular.
r=r=3r-13 -6 0
2 6 |6 6 |6 2y
39 |49 |4 -3 ,
36 -78 -10
. 1 0 2 0 2 1
Adid=| - - =9 18 2
39 |49 |4 -3
6 -12 =2
1 0 20 2 1
2 6 6 6 6 2
Hence
36 -9 6
A‘lz—% —78 18 —12
-10 2 =2
0 -1 0O
341 0 ; ;
B = [0 -1 1=1(-1) ‘:—1, so Bis nonsingular.
ThTE L 403 -
n=n-—n
34 4 ho3)
4 3 1 3 1 4 ,
-7 1 1 -7 3 3
. 3 3 1 3 1 3
AdjB =| - — = 3 0 -1|={ 1 0 -1].
4 3 1 3 1 4
3 -1 0 1 -1 O
3 3 1 3 1 3
3 4 1 4 1 3
7 -3 -3
Hence B'=| -1 0 1
-1 1 0
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66
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i
3

0o -5 -7 3

0
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Hence B™'
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1 -1 0
4. |4 = |1 1 0|. Expanding this determinant using the third column we have

RELTl 1

1 -1
1‘ = 2,50 4 is nonsingular.

2 1 31 3 2
I 1 21 2 1 )
I -1 -1
) -1 0 1 0 I -1
Adj4=| - - =l 1 1 =3
I 1 2 1 2 1
-1 -1 5
-1 0 1 0 I -1
2 1 31 3 2
I 1 -1
Hence 4 =4/ -1 1 -1
-1 -3 5
1.4
1. () Asetof m nxl1 vectors a, ... ,a_ arelinearly dependent if there exists scalars 4,, ... ,4
not all of which are zero suchthat 4, ¢, + ... +4,a, =0.
(ii) Consider

Ax +,x, +A4,x,=0
which is the following set of equations in 4,,4,, and 4, :

24, +24,+144, =0
~TA +44,-272,=0
A=A, +32,=0

From the third equation A =A4,-34, and substituting back into the other two equations
givesA, =-24,,soifwetake 4, =1, 4, =-2,and A, =-5 we get —5x, —2x, +x,=0.

Thus the vectors are linearly dependent.

11



(iii) Consider

Ax +4,x, +A4,x,=0

which gives
94, +24,-44,=0

~34, =0
—A, 424, +84, =0.

The second equation gives A, =0 so we are left with 24, =44, and 24, = -84, which are true only if
A, =, =0. Hence the vectors are linearly dependent.

Hence r(A4)=3.

12 0
=—1(-D"l0 1 1
1 0 -1

—_—
(@]
S = NN

12



1 2 0

1+1 1
= 0 1 1=1-D ‘:1_
S T S -2 -l
Hence r(B) =4.
3. Expanding | 4| by the third column we have
4| =(-1)*"! 2 o +(1=x0) (=1 =—(1-x)+(1-x)[(-x)1-x)—4]
1 0 2 1-x
=(l-x)x (x—-06).

Therefore | 4| =0 if x =1, orx =0, or x =6 butis nonzero for all other values of x.
So if x does not take the value 0, 1, or 6 then »(A4) = 3. If x takes any of these values consider the minor

‘S—x 1‘

for all values of x. Thus we have r(A4) =3 for all x other than 0, 1, 6, r(A)=2 for x taking the value
0,1, 0r6.

N'=(x (xx) X’)’ - (x| (xx)" } X'= X[(X'X)' T X' =x(xx)' X' =N.

M'=(I-N)=I'=N'=M.

Hence both N and M are symmetric.

Consider

NN =X(XX)'XX(XX)"'X'=N

13



and

MM =(I-N)I-N)=I-2N+N*=M.

So M and N are idempotent.

Now

NX = X(XX)'XX=X

SO

MX =X -NX=0.

(i) r(N)=tN=tr(XX)"' XX =tr], =K.

r(M)=tr({l —N)=tr] —trtN =n—-K.

1.5

1. () A®B=

B® A=

(AQ BY =

0
14

7 0 -7 0 14
5}_-@ ~5 16 10
NIl 0o 21 0 28]
5} 24 15 32 20

—12J 0 0 -7 14

0 0 21 28

-1 ? -8 16 -5 10|

24 32 15 20

14



_1(0 8} 3(0 8} 0 -8 0 24

7 5) 27 5)| |=7 =5 21 15
0 8 0 8| | 0 16 0 32/

2(7 sj 4(7 sj 14 10 28 20

r(A® D)=0—-5+0+20=15

trA trB = (=1+4)(0+5)=15.

0 ame[71 2)0 TY3 4)_[(16 3)(3 4)_(34 el
. _( 3 4}[8 5}(2 —1}‘(32 41}(2 —lj_(178 87)’

54
178
61 |
87

A®B' =

vecABC =

(C'® A)vecB =

" AB_—1207_16 3
() L3 4)l8 5) (32 41

15



SO

trAB =16+41=157.

(vecA')vecB=(-1 2 3 4)

0

8
=57.

7

5

(iv) trdBC =54+87=141.

C'"is 2x2 and vecB is 4x1 so the required identity matrix is 2x 2 and we have

o) Ao

(vecA")' (C'® I')vecB = (vecA')’ vecB
1 0 1 0
4 -1
0 1 0 1
30 2 0
0 3 0 2
=(-1 2 3 4) vecB
4 0 -1 0
0 4 0 -1
0
8
-(9 22 -5 0)
7
5
=176-35=141.
a, b, a, ab - ab
2. Lleta= , b= .Then ab’ = (b, b,)=
a, b, a, ab - ab
al al
b ®a=|h b, =ab'
an an
al(bl bm)
a®b' = =ab'
a, (b, b,)

16



albl

anbl

vecab'=| : |=vec (b ®a).

b®a= : =vec ab’.

Exercises for Chapter 2

22
1. (i) In matrix notation we have
Ax =0
I 0 2
where A=|1 2 1
a 1 1
1 0 2
= 0 -1
r,=r,—r,
We=r—ar\0 1 1-2a
1 0 2
o= 0 2 -1
5=5=05%0 0 15-20

Thus r(A) =3 for all values of & other than « =0.75, in which case we only have the trivial solution.

(ii). If «¢=0.75, r(4)=2<3 sowe have an infinite number of solutions. If this is the case the
original system has the same solutions as
X +2x,=0

2x, —x, =0.

17



Let x, =4, any real number. Then x, =4/2 and x, =24, so our general solution is
2\
x =[A/2]|
A

2. In matrix notation we have

Ax=0
1 2 2 =3
where A=|1 0 -2 13|.
35 4 0

As Ais 3x4 we must have r(A4) <4, the number of variables. Hence if a nontrivial solution exists, an
infinite number of solutions exist.

1 2 2 -3

4 = |0 2 -4 16
RELTEG 21 —2 9
r=r-3r

Hence r(A4) =3 and the original system has the same solution as
X +2x,+2x,-3x, =0
X, +2x,—8x,=0
x,=0

=x, =-2x;, X, =2x,.

Let x, = A, where A is any real number. Then x, =—24 and x, =24 so
22

is the general solution.

18



3. Rewrite the system as

x+3z+ky=0
2x—4z+3y=0
3x—22+ky=0
which can be represented in matrix notation as
Ax=0
1 3 k
where A=(2 -4 3
3 2 k
(1 3 k) (1 3 k)
= Lo 10 3—2kJ = Lo 10 3—2kJ.
nERT200 —11 —2k)H=Eph 0 0 —33+0.2k
r=r=3n

If £+=33/2 then r(A4)=3 and the only solution is the trivial solution. Thus for k£ =33/2 we have a
nontrivial solution and for this case our system has the same solution as

x,+3x,+33/2x,=0
—10x, —=30x, = 0.

So x, =-3x, and x, =—15x, /2, and our general solution is

(=151/12)
X*:L =32 J
A

for any real number A.

2,
1.3 In matrix notation our systemis Ax =b
1 1 1 2
where A=|2 1 2|and b=
4 4 c
1 11 2 I 1 1 2 I 1 1 2
Then(4b)={2 1 2 5 .= 0 -1 0 1 = 0 1 0 -1
43 4 ¢ %:2:22 10 c-8)2772(0 -1 0 c-8

19
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If ¢ =9 then r(A)=2 but r(4b)=3 and the equations are inconsistent. For ¢ =9 our system has the
same solution as

X +x,+x, =2

x, =-1.

A particular solution to this system would be x, =0, x, =—1, x, = 3. The homogeneous equations are
X +x,+x,=0

x,=0

which have a general solution of the form x, =4, x, =0, x, =—A for any real number A. Hence the
general solution to our nonhomogeneous equation is

2. In matrix notation we have
1 3 3)\(x 9

3 17 8| y|=|49],
3 4 1)z c

or Ax =b where

1 3 2 9 13 =2 9 13 =2 9
(4b)=|3 -17 8 49| = |0 26 14 22| = |0 13 -7 -l
r,=r —3r 1
304 1 )23 0 -13 7 e=27)n=755l0 —13 T =27

13 =2 9

~ o 13 =7 -11|.
BEBYLl0 0 0 ¢-38

Clearly r(A4)=2<3, the number of variables. Hence no unique solution exists as this requires that
r(Ab)=r(A)=3.

20



(a) If ¢ =38 then r(Ab)+r(A4) and the equations are inconsistent. No solution exists.

(b) If ¢ =38 then r(Ab)=r(A)=2 which is less than the number of variables so an infinite number
of solutions exist. For this case our equations have the same solution as

x+3y-2z=9
13y—-7z=-11.

Let y=0, then z=11/7 and x =85/7 s0 a particular solution to these nonhomogeneous equations is

The corresponding homogeneous equations have the same solution as

x+3y-2z=0
-13y+7z=0.

Let z= A, where A is any real number. Then y=7A4/13 and x=54/13 so the general solution to the
homogeneous equations can be written as

/15
—| 7.
13

13

Adding, we have the general solution to the nonhomogeneous equations is

85/T7+54/13
TA/13
11/7+2

3. (i) Inmatrix notation our system of equations is

xl
1 4 17 4 38
2 12 46 10|72 |=] 98 |.
3 18 69 17)| | 153

21



Consider

1 4 17 4 38
(Ab)=[2 12 46 10 98 |.
3 18 69 17 153

If the equations are consistent

r(Ab) = r(A).

But »(4) <min(3,4) < 4, where 4 is the number of variables, so the equations will then have an infinite

number of solutions.

1 4 17 4 38 1 4 17 4 38
(4b) = 0 4 12 2 22 = |0 2 6 1 11

~

1 4
0 2

n=n-2ilg 6 18 5 39)5=3n0 6 18 5 39)7= 0 o

r=r=3n
Hence r(Ab) =r(A) =3 and the equations are consistent.
1 05 216 1 050
(4b) = 026 1 11| = |02 60
=h=2hlg 0 0 1 3)ii 20 0 0 1
B=a0
It follows that the nonhomogeneous equations have the same solution as
X, +5x, =10
2x, +6x, =8

x, =3.

Let x, =0, then x, =4 and x, =10, so a particular solution to this system is

10

22

17 4 38

6 1
0 2

11].

6



The corresponding homogeneous system has the same solution as

X, +5x,=0
2x, +6x, =0

x, =0.
Letting x, = A, where A is any real number we have x, =-34 and x, =54 so the general solution to

these homogeneous equations can be written as

-S54

Adding we see that the general solution to the nonhomogeneous equations can be written as

10-54
. 4-32
X = .
A
3
24
1. Writing our system as Ax = b we have
1 2 2 1 2 2
i 4=/0 2 1| = [0 2 1
1o 1) 5o 2 3
. 1 , . .
Thus [4]=1(-1)" 3‘ =8, and the equations have a unique solution. Now
2 1 o 1 o 2]
0 1 1 1 1 0 ,
2 1 =2
T O O R R 1 B
A=l _ 15 3 2
8 0 1 1 1 1 0 8
6 -1 2
2 2 1 -2 1 2
2 1 0 1 0 2

23



so the unique solution is

2 2 61 42
. 1
_1 1)l a2l s,
X g 3 g 5
2 2 2l 22
1 -1 -1 1 -1 -1
i) 4=l1 2 3 = |-1 2 3|
2 2 2R g o0 o

Thus |A| =0 and no unique solution exists. Moreover the first and the third equations are inconsistent,
S0 no solution exists.

11 -2 11 =2
(i) [4]=12 2 -4 = (00 0,
33 -6 2 g

50 | 4| = 0, and no unique solution exists. Consider

11 -2 3 11 -2 3 11 -2 3

(4b)=|2 2 -4 6| = |3 2 -6 9| = [0 -1 0 o

32 26 9)79%l2 2 4 6372 o 0 0 o
1y=ry =21,

thus r(Ab) =r(A4) =2 and we have an infinite number of solutions. Our system has the same solution as

x+y-22=3
-y=0.

Let z = A4, any real number. Then the general solution can be written as

3+24

2. Consider a system of n linear equations in n variables which we write as
Ax =b.

24



If Ais nonsingular then the solution for x, can be written as

all e bl e al

n

x = : /)4

b

nl n nn

where the numerator is obtained by replacing the ith column A by the vector b and taking the determinant.

By Cramer’s rule,

1 2 -2 -3 0 -3
4 2 1 |4 2 1 ‘—3 —3‘
8 0 1 8 0 1 8 1
X = = =42/8.
4 4 4
1 1 -2 |1 1 =2
0 4 1] [0 4 Il |4 1
18 1 (07 3 (7 3 5/3
X, = = =
il 4 4
I 21 2 1
0 2 4 |0 2 4 2 4
1 o g8 |0 -2 7 |-2 7 /8
X, = = = .
il il il
Exercises for Chapter 3
3.2
1. (i) The endogenous variables are the variables of interest to us in our economic analysis. The

whole purpose of building the model in the first place is to get some insight into what determines
the values of these variables. The exogenous variables are variables whose values are taken as
final for the purposes of our analysis. There are noneconomic variables, economic variables
determined by noneconomic forces, or economic variables determined by economic forces other
than those at play in the model. Definitional equations represent relationships between the
variables of the model which are true by definition. Behavioral equations purport to tell us
something of the behavior of some economic entities. The structural form is the original form of
the model that comes to us from economists. The reduced form is obtained by solving for the
endogenous variables in terms of the exogenous variables. The solutions are called the
equilibrium values of the endogenous variables. A model is complete when the number of linear
equations in the model equals the number of endogenous variables and the model has a unique
solution.

25



2.

(i) Comparative static analysis concerns itself with how the equilibrium values of the endogenous

(i)

variables change when we change the given values of the exogenous variables. If we write the
structural form as

Ax=Db

where x is a vector containing the endogenous variables and b is a vector containing the
endogenous variables or linear combinations of the exogenous variables, then the reduced form
is given by

x=4"D

and all our comparative static results are summarized by

Ax = A'Ab

where Ab is the vector of changes in the values of the exogenous variables. Often in our
economic analysis we are not interested in finding the complete reduced form. Instead, all that
we are interested in is the equilibrium value of one of the endogenous variables and our
comparative static analysis is concerned with how this equilibrium value changes when there are
changes in the values of the exogenous variables. In this case we can use Cramer’s rule to solve
for the equilibrium value of the endogenous variable in question.

Isolating the endogenous variables on the left hand side of the equations we have
Y-C-1=¢G

-bY+C=aqa
—dY+1=c

or in matrix notation

I -1 -1)\(Y G
-b 1 0f|C|=|a]
-d 0 1)1 c

which we write as

Ax =b.

Now we have three equations in three endogenous variables and

1 -1 -1
Lll-b -1
4=[1-b 0 -1=(-1)(-1)" J 1‘:1—b—d,
~d 0 1

26



which we assume is nonzero so the model is complete. The reduced form is given by

x =A"'b
1 0o |- o |- 1]\
o 1| |-a 1| |-d o
G
! -1 -1 1 -1 1 -1
= - - a
1-b—d ‘o 1 ‘—d 1 ‘—d 0
C
-1 -1 1 -1 1 -1
1 0 |-» 0 |-» 1
] b d\(G ] ] 1\(G
_ 1 _ _ 1 _
_l—b—dlld dl| a l—b—dbld bl al.
1 b 1-b c d d 1-b)\ c

(i) We go to the first column of 4" and the elements of this column gives us the results. So

|
Ar 1-b-d

+__ b
ac 1-b-d

r__ d
Al C1-b-d’

(iii) Proceding as before we have
Y- C-1=G

-bY+C=a-bT
-dY+ [ =c

G G
so all that changes is that the vector b is now| a —bT |whereas before itwas | a |.

C C

In our answer for (i) we replace aby a —bT.
If both exogenous variables increase by unit amounts then

1
Ab=|-b
0

27



and

That is our results are obtained by adding to the first column of 4", —b times the second column of 47",
For example

« b=b(l-d)  pd
AC = 1-b—d 1-b-d’

3. Isolating the endogenous variables on the left hand side we have
Q-pP=a+pT
Q-bP=a+cR

which in matrix notation is
1 -gY0O) (atpT
1-b)\P) la+cR /)

Using Cramer’s rule, the equilibrium values of the endogenous variables are given by

a+pT -p
. |at+tcR  —b _—b(a+ﬂT)+,6’(a+cR)
0 = 1-8 B—b
1 -b
and
1 a+pT
P*:l a+cR _a+cR-a-pT
(5-b) p-b
(i) AT

28



We have

.__bPAT _ (—ve)(+ve)(—ve)(+ve) _tve
AQ = B—b (—ve)—(+ve) —ve '

Hence the increase in T leads to a decrease in the equilibrium quantity.

Similarly

Ap = BT _ (—ve)(—ve)(+ve) - ve.
p—b —-ve

so the increase in T leads to a decrease in the equilibrium price.

(i) AR
Similarly
AQ" = BcAR _ (—ve)(+ve)(-ve) - ve.

B-b —ve

so the decrease in rainfall leads to a decrease in the equilibrium quantity, and

. c¢AR  (+ve)(—ve)

AP = =
p—b —-ve

=+ve,

so the decrease in rainfall leads to an increase in equilibrium price.
4. Substituting the consumption and investments functions into the definitional equation, then isolating
the endogenous variables o the left hand side gives
YA-p)-or=a+y+G
tY+ir=M.

Using Cramer’s rule, the equilibrium values of our endogenous variables are given by

29



a+y+G -0
M A Aa+y+G)+oM

e Ty R R (- B)+ 61
o
1-8 a+y+G

_‘ T M| (1-pIM +r(a+y+G)

" ‘1—/3 —5‘ M- p)+or

If G and M change by AG and AM respectively we have the resultant change in »"is given by
1- B)AM +AG

=
A= A(1=pB)+or

We want A" to be zero which implies that
(l—ﬂ)AM +7AG = 0.

So the required decrease in M is given by

MM:-ﬂAG'
(1-5)
Exercises for Chapter 4
4.1
(1 05)(x)

o 5%Nos ol

v ol 1)

3 -1 1.5)x
(il (x,x,x) -1 1 =2ux,|
1.5 -2 3)\x

30



(iv) (xyx,x) 1 -1 2| x
0 2 -8)(x
2 15 4)\(x
V) (xxx) 15 2 3 |x
4 =7 )\ x,
4.2

1. (i) Consider

=(1-2) -1=2(2-2)

1- -1
|A—/11|=‘ - ‘

1-4

so the matrix has the eigenvalues 4, =0 and 4, =2.

(ii) Consider
A2 ] 2 1 5-4 2
|A-A1l=| 2 1-2 0:1(—1)3“1_/1 0+(1—,1)(—1)3*3 ) 1—/1‘
10 1-2
=A-1+(1-2)[(5-A)(1-2)-4]=(1-2)(5-64+ A* =5) =(1- 1) A(1-6)
so the matrix has eigenvalues 4, =1, 4, =0 and 4, =6.
(iii) Consider
S 10 2-2 1
l4-a1]=| 1 1-2 0:1(—1)“21 1_/1+(1—/1)(—1)2+2 _1 o
10 1-2
=—(1-2)+(1-4)[(2- )-1]=(1-2)(2-32+4%-2)
=(1-2)A(A-3),

so the matrix has eigenvalues 4, =1, 4, =0 and 4, =3.

(iv) Consider
—S-A 20 3-4 2
[a-atl=| 2 32 0==(+A)(-)7| T ,1‘
0 0 -5-4 T
:_(5+1)[(3+z)2—4}:—(5+z)(12+61+5)
=—(5+2)(A+5)(A+1),

so the eigenvalues are 4, =4, =-5and A, =—
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2. Consider

b
‘—(a1 —/1)(a2 —/1)—b2 =a,a, —/1(a1+a2)+/12 -b’

a—A
|A—iﬂ:‘

so the equation which defines the eigenvalues is the quadratic equation
A’ =2(a,+a,)+aa,-b* =0.

This equation has equal roots if and only if
(a, +c12)2 —4(a1a2 —bz) =0.

Thatis (, —a, )’ —4b* =0, but clearly this is impossible, for = 0.

4.4

1. () The vectors x,,..., x, are orthogonal if x;x, =0 for i = j. They are orthonormal if they are

orthogonal and x/ x, =1 for i =1,...,n.

(ii) Consider
1
YX=(n y, »:)| =1|=» =, +3p;
3

For y and x to be orthogonal we want this expression to equal zero. Hence three vectors orthogonal to x

would be
Iy(-1) (-3
IL,|-1],] O
0 0 1

(iii) Consider
1
' 1 1
X, =—= ll=—F=(y, +y,+);).
y'X, ngqyzn)l ngn Y2+ 93)
Fory to be orthogonal to x, we want this expression to be zero. Hence

-1 -1
I jand| O
0 1

would be orthogonal to x,. Normalizing these vectors we have that
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X, =——= —
V2 0 V2 1
meet the requirement.
2. (i) Consider

|A—/11|:‘2_/1 4

5 l‘:(z—z)z —16=4-42+27-16=2"-42-12,

so the matrix has two eigenvalues 4, =6 and A, = -2.
Eigenvector for 4, =6

Consider

Both the equations give
X, =X,.

We want our eigenvector to be normalized, that is

x4+ x; =1
o)
2x22 =1
and we can take
1
)C2 = E .

Thus an eigenvector corresponding to A, that meets the requirements is
1 (1
X =—. |
b2

Eigenvector for A4, = -2

Consider

ol 1)
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Both these equations give
X, ==X,

so a normalized vector corresponding to 4, would be

Clearly x, and x, are orthonormal.

(ii) Consider

4-1 2
|A—/II|:‘

=(4-1)(1-1)-4=2(1-5
A2 -4 a(as),
so the matrix has eigenvalues 4, =0 and 4, =5.

Eigenvector for 4, =0

Consider

a2

Both these equations give x, =—2x,. We want our eigenvector to be normalized, so we require that
5x2 =1 and we can take x, =1/~/5.

Our eigenvector associated with 4, would then be

Eigenvector for 4, =5

Consider

Both equations give
X, =2x,

34



so the required eigenvector is

1 (2
X, =—— .
2 \/5 1
(i) From exercise 1. (iii) of 4.2 we know the eigenvalues for this matrix are 4, =1, 4, =0, and
A, =3.

Eigenvector for 4, =1

Consider
1 1 1)x) (0
(A-AI)x=|1 0 0|l x, |=|0
1 0 0/lx,) \O

which render the equations
X +x,+x,=0

x, =0,
S0 x, =—x,. For the vector to be normalized we want
X+ +x =1
which implies that 2x2 =1 so take x, =1/~/2.

Our eigenvector associated with 4, would then be

0

1
x=—r 1
1\/5_1

Eigenvector for 4, =0

Consider
2 1 1)(x 0
(A-A1)x=|1 1 0| x,|=|0
I 0 1)x 0
which gives
2x, +x,+x,=0
x+x,=0
x +x,=0.
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Thus x, = —x, =—x,. The normalized requirement implies that 3x” =1 so we can take x, =

required eigenvector would be

1
L

X, =
2 \/g_l

Eigenvector for 4, =3

Consider
-1 1 1)(x 0
(A-2)x=| 1 =2 0 | x,|=|0]
0 0 -2){x 0
Thatis
-X, +x,+x,=0
x,—2x,=0
x, —2x,=0,

$0 x, =2x, =2x,. For the vector to be normalized we require 6x; =1 so we take x, =

eigenvector associated with A, would be
2

1. (i) Consider
(1 -1 1) (10
211 1 )l=1 1) Lo 1)

so the matrix is orthogonal.

(ii) Consider
0 N2 2) 0 3 B} (10 o
B 21Nz V2 2f=[o 1o
B2l 2 1 1] oo

which establishes the result.
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(iii) Consider
0 5 s5)( 0 6 26

1
| Vo 2v5 2)V5 205 5 =0
0

2J6 5 1] 5 2 1

S = O

so the matrix is orthogonal.

2. Now
, 1 2) 1 2} (10
QQ:%{JE J{_ﬁ 1Ho )

and

3. From exercise 1 of 4.2 we have that the eigenvalues of this matrix are 4, =4, =-5 and 4, =-1.

Consider the following set of equations
2 2 0)x

0
(4-40)x=|2 2 0]l x |=|0
00 0)lx) (O

which imply that x, = —x, and x, can take any value.

Taking x, =0 the normalization condition requires that x; + x> =1. Thatis 2x’ =1 so we can take

x1=1/ﬁ.

This gives the following eigenvector
1
L

X, =
1 \/5 O

Taking x, =1 the normalization condition requires that x’+x; +1=1. So x,=x,=0. A second
eigenvector associated with the repeated roots that meet our requirements would be
0

x,=0|
1
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Consider now

-2 2 0)\(x 0
(A-A40)x=| 2 -2 0| x,|=|0
0 0 —4)(x 0

which imply that

X, =X, x,=0.

The normalization condition requires then that

2xl2 =1
so we take x, = L and our eigenvector is
2
1
1
x,=—=|1].
2
V20,

A Q that meets our requirement is

/N2 0 1/42
O=-1/\2 0 1/32]

0 1 0

The main diagonal elements of Q'AQ are the eigenvalues -5, -5, and —1.
4. (i) (a) Fromexercise 1. (i) of 4.2 the eigenvalues of this matrix are 4, =0 and 4, =2.

Consider the equations

S oY
(A-A41)x =A4Ax = = ,
-1 1){x 0

which renders x, = x,. The normalized condition requires x>+ x> =1 so we take x, =1/~/2 and
1
1
X =—F=
2 [J

as our eigenvector.

The equations
(4 /1[)_—1 - x ) (0
S (S T | GV b )
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give x, = —x, so we take
1
1
X, =—=
T V2 (—J
as our eigenvector. Then
0= 1 (11
2 -1)
The main diagonal elements are the eigenvalues 0 and 2.

(b) From exercise 1. (ii) of 4.2 the eigenvalues of this matrix are 4, =1, 4, =0, A, =6, so first we

consider
4 2 1)x) (0
(A-ADx=|2 0 0] x,|=|0
1 0 0)lx,) (0

which gives x, =0 and x, =-2x,. The normalization requirement is then 5x; =1 so we take x, :ﬁ

and

as the eigenvector associated with A4, .

Next consider
5 2 1)x 0
(A-A,)x=4x={2 1 O x,|=|0
I 0 1)\x 0
which gives
5x,+2x,+x,=0
2x,+x,=0
x, +x,=0.

So we have x, = —x, =—x, /2.

The normalization requires then that %xj =1 so we take x, = \/% and as our eigenvector,
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Lastly,

-1 2 X, 0
(A-ADx=| 2 =5 0] x,|=|0
1 0 =5)\x 0
which gives
x,—5x,=0
2x, —5x,=0

sO x, =5x,=2.5x,. Normalization requires that x’+x;+x;=1 so 30x; =1 and we take

x, =1/~/30 and as our eigenvector

5
x3=—1 2
0|
An orthogonal Q that meets our requirements is
0 5 5
Q:ﬁ J6 205 2.
26 51

The main diagonal elements of Q’4Q are the eigenvalues 1, 0, 6.

(c) From exercise 2. (iii) of 4.4 we have that a set of orthonormal vectors for this matrix are

SO

0 2 2
Q=ﬁ NSNS
3 2 1
The main diagonal elements are the eigenvalues.

(i) (a) As the eigenvalues are 0 and 2 we know the matrix is positive semidefinite and x'4Ax >0
forall x.

(b) As the eigenvalues are 0, 1, and 6 the matrix is positive semidefinite and x'4x > 0 for all x.

(c) Again the eigenvalues are 0, 1, and 3 so the matrix is positive semidefinite and x'Ax >0
for all x.
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4.6
1. (i) From exercise 1 of 4.5 a set of orthonormal eigenvectors for this matrix is

o)™ ()
32 20 1)

S0 we consider the transformation

y=0%
! J2
where Q:{%[_ﬁj %[ . D
Thatis
_1 . V2
SNCRNG
Vs —xl+%x2

(i)  From exercise 2 of 4.5 a transformation that meets our requirements is

1 _1 9
NERG
y=l 0 0 I |x.

1 1
NG
Thatis
1 .1
yl_\/gxl \/Exz
Vo =X
L,
V3 \/Exl \/Exz

2. In matrix notation the quadratic form can be written as

wify 1)

SO we consider

|A—Al|=
1-2

—(2-3)(A+1)

r—z 1=O—lf—4

and equating this determinant to zero gives eigenvalues 4, =3 and A, =-1.
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Consider

a3 Y

which gives x, = x, so a normalized eigenvector would be

Consider
-3 35

so x, = —x, and a normalized eigenvector would be
1
1
X, =—= .
T2 (—J

The required transformation is
X _ 1 1 1 1%
y) 2 =1y, )

The quadratic form is indefinite as one of the eigenvalues is positive whereas the other is negative.

3. IfAis an nxn positive definite matrix then all the eigenvalues of A are positive so there exists an
orthogonal matrix Q such that

A 0
Q'40 =
0 A

n

where 4,,..., A are all positive. Let

JA 0
VD = :
o &

Then as Qs orthogonal

A=0DD Q'

so let

rP=DQ'.
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4.7
1. Consider

and
AA=ii'ii'/n* = 4 as i'i =n, so Ais symmetric and idempotent.

Now
B=(I-4)=1-4'=B
as A is symmetric and
BB=(1-A)(I-A4)=1-24+A4" =B
as A is idempotent, so B is also symmetric idempotent.

AB=A(I-A)=A-A2=0

as A is idempotent.

As A and B are symmetric idempotent their ranks are equal to their traces so
r(A)=ttA=tri'i/n=1

and
r(B)y=ttB=tr(I-A)=tr] —trd=n—1.

As the eigenvalues of a symmetric idempotent matrix are 1 or 0 and as the rank of a symmetric matrix is
equal to the number of nonzero eigenvalues, A has n—1 eigenvalues of 0 and 1 eigenvalue of 1 whereas B
has n—1 eigenvalues of 1 and 1 eigenvalue of 0. It follows that both A and B are positive semi definite
matrices (clearly all symmetric idempotent matrices are). Moreover as the determinant of a symmetric
matrix is the product of the eigenvalues both matrices have zero determinants.

2. Consider

!

N'=(x (xx)" x') =(x) [(X'X)']_1 X'=N

and
NN=X(XX) XX(XX) X'=N

so N is symmetric idempotent. Now
M'=(I-N) =I-N
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as N is symmetric and
MM =(I-N) (I-N)=I-2N+N*=M

as N is idempotent, so M is also symmetric idempotent. Also
MN=(I-N)N=N-N>=0

as Nis idempotent. Finally
P(N)=teN=tr(XX)" XX =te], =K

and
r(M)=tM =tr] —K=n-K.

The matrix N has K eigenvalues of 1 and n—K eigenvalues of 0 whereas M has n—K eigenvalues of 1 and K
eigenvalues of 0. Both matrices have determinants of 0.

3. (i) From exercise 1. (iii) of 4.2 the eigenvalues of this matrix are 1, 0 and 3, so clearly the trace of
the matrix is the sum of the eigenvalues. Now

2 1 1 [t 1o
11 0=l 1 0[=1(-1)
1o 1 1 o1

3+3

5

11
11

so the determinant is the product of the eigenvalues. The rank is 2.

(ii) - From exercise 1. (i) of 4.2 the eigenvalues are 1, 0, and 6 so clearly the trace is equal to the sum
of the eigenvalues. Now

521 420
210:210:1(—1)“21
1o 1) |1 01

42‘

so the determinant is the product of the eigenvalues. The rank is 2.

(i) From exercise 4. (i) of 4.5 the eigenvalues are 1, 0, and 3, so clearly the trace is the sum of the
eigenvalues. The determinant is clearly zero, the product of the eigenvalues and the rank is 2.

4.8
1. (i) The leading principal minors are
-3 2 0
-3 2 sal=3 2
-3, ; =52 -3 0 =-5-1" ; =-25.
0 0 -5

These alternate in sign, the first being negative. Thus the matrix is negative definite.
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(ii)  The leading principal minors are

3 1 0 o 2 6
=2, 1 -1 2|=|1 -1 2[=1(-1)*"
0 2 -8 [0 2 -8

‘:_4.

These alternate in sign, the first being negative. Thus the matrix is negative definite.

2. The principal minors are

The principal minors are all nonnegative with one being zero. Thus the matrix is positive semidefinite.

1
3. The first order principal minors are 1, 3, and 8 but a second order principal minor is 5

2
‘:—1. This
3

is enough to establish that the matrix is indefinite.

Exercises for Chapter 5

5.2
1. Let f(x,....,x,) = f(x) be adifferentiable function of many variables. Then the gradient vector of

fix) is
Ji(x)
Vi(x)=| :
J.(x)

That is it is the vector of first order partial derivatives of the function.

The Hessian matrix of the function is
Sux) o £ (x)
H (x) = : : .
Su(x) o (%)

Thatis it is the matrix of all second order partial derivatives of f(x).

i ¥ :3)512 xia Y :x13 Xy

3 2.2
SO Vy(x)z( x13x2}

XXy

_ 2 ) A3
Y =6xx3, ¥, =0x7X,, ¥, =2x,
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so the Hessian matrix is

6x,x; 6x.
H(x)= [6x12x2 ti );ZJ
X x, 2x

(i) » = 5xf —6x,X,, ¥, = —3x12 +2x,
5x; - 6x1xzj

SO Vy(x)=
y) [—3x12+x2

i 220)613 —6x,, ¥, =—6x,, ¥y, =2

SO

H(x) [20x13 —6x, —6x, J

—6x, 2

(i) y,=1/x,, y, =-x,/x; SO
V(x) = 1/x,
Y= —x,/x )

=0y, =—1/x22, Vo :2x1/x;7

1 (x) :[ 0 —1/x§}

~1/x; 2x,/x;

(iv) Write y = (x, —x,)(x, +x, )71. Then
yo=(x+ xz)_1 — (%, —x,) (% + xz)_2 =2x,(x, + xz)_2 ,
1 -2

b :_(xl +x2)_ _(xl _xz)(xl +x2) :_2x1(x1 +x2)_27
SO

Vy(x)= [ 2x, (X, +x,) J

—2x, (X, +x, )_2
Yy =—4x, (xl + xz)_3 5

v, =2(x, erz)_2 —4x, (x, +x2)_3 =2(x,—x,)(x, +x2)_3,

Vo =4x, (xl + X, )_3 )

SO
—4x, 2 (x1 - X, )j

H(x)=—L1 .
() (x,+x,) [2(x1 ) 4x,
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4

V) 5 =5(x +23) 26 =10x, (5] -2)',
vy =5 -2 ) (~4,) =203, (33 - 242) .

SO
4 10x
Vy(x)= (x12 B 2x22) [—20)621}
V= 10(9512 —2x22)4 +40x, (xf —2)622)3 (2x,)
= (x2 —222)"(90x —20x2)
¥, =40x, (xf - 2x22 )3 (_sz) =-320x,x, ()Cl2 - 2x22 )3
y, = —20(x12 —2x? )4 —80x, (xl2 —2x; )3 (—4x,)
= (x? —222)’(360x7 —20x2),
SO
2 2 —
Hx) - (-2 )3 {90x1 20x7 2320x1x§}
-320x,x, 360x; —20x,
2y _ 3y
W) = x4+ x) & X7+
SO

1

Write y, :—2x1_3( X, x23) SO

_6x14( 2 x )_ +2x1‘3(x1‘2+x2‘3)_2(—2x1‘3)
4()c12+3x2 )( 1_2+xz_3)_2
_2x1 ( 2+x2) ( 3)62_4)

2
:—6‘)(:1 x2 (‘xl +x2 ) .

Write y, =-3x;" (x> +x,°) " s0
v =120 (7 + xf)_l +3x5,* (6 + xf)_2 (-3x,")

-2
a5 ) -3 -2 -3
=3x, (4x1 + X, )()c1 + X, )
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SO

-4 2 -3 3 4
L[ e
2 .
(7 +x,7) —6xx 3x,(4x7 +x,”)
(V||) yl — 62x1+3x2, y2 — 3er1+33¢2
SO
2
Vy(x) — 62x1+3x2 ( J'
3
Yy = 462x1+3x2, Vi, = 662x1+3x2, Vo = 962x1+3x2,
SO
4 6
H x)= 62x1+3x2 )
)= (4 )
(viii) y, = 6x,x, —7+[x,, y, = 3x; _7x1/2\/z
SO
6x,x, =7 |x
Vy(x)= 2 2
3x; —7x,/ 24/x,
V=6, y, =6x,=7/2x,, y,, =Tx, /4x2%
SO
6 6x, —7/24/x,
H(x)= M
6x, —7/2{x, Tx,/4x;2
2. é’y = xl é,y = x2
ox, x +x; Ox, x+x)
A2 . S R
3 J :(xf+x§) - X, (x12+x§) 25 =21
o (x2 +x2)
By symmetry

2 2 2
o Y _ X TX
2 20
2 2
ox, (x2+x2)
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ANB

%

A N B is convex

AUB

/

////////
//

A UB is not conv
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ANB -~

-

\_/

A N Bis convex.

AUB >~

2

%

@1"

A U Bis convex.

(i) (@) LetueX,veX =cu<zand ¢'v<z
Consider
c’(/lu+(1—/1)v)=/1c’u+(1—/1)c’v 0<A<1
S/Iz+(1—/1)z

:Z’

so Au+(l-A)ve X,
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(b) Letu,ve X = Au=>b and Av=>b and consider

A(Au+(1-2)v) = Adu+(1-2) Av 0<A<1
=Ab+(1-4)b
=b

so Au+(l-A)ve X,
(c) Similar to (b)

(d) Letuand ve X =u, 20, v, 20 and consider Au+(1—-21)v for 0< A <1. The
ith element of this point is
Au, +(1—/1)vl. 2/10+(1—/1)O=0,

so this point also belongs to the non negative orthant.

2. Suppose S had two points say u and v. Then all points Au+(1-4)ve S for 0<A<1. Butthis
contradicts S having a finite number of elements. So S has no or one point only.

3. Suppose (s.t,)eSxT =s,eSandt, eT and (s,,;,)eSxT =s,eSand 1, eT.
Consider the point
A5y, 1)+ (1= 2) (8,0 1,) = (As,, (1= A)s,, A, +(1-2)1,)  0<A<]1

As Sis convex As, +(1—1)s, € S and as Tis convex Ar, +(1—- 1), €T.

Graphof SxT

-
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4. letu,veX nX,=>uvelX anduvel,
= Au+(1-2)ve X, and Au+(1-2)veX,
> Au+(1-4)ve X NnX,

S0 X, N X, is convex.

X, U X, need not be convex as the following counter example shows:

A 4

\
y X,

Xlz{erz/xISO, x,2-2,x,20, x2£2}
Xzz{erz/xwax;Sl}.

5 Let y=7f (xl,...,xn)z f(x) be a function of many variables. This function is homogeneous of
degree rif

f(/ixl,...,/ixn) = /Vf(xl,...,xn).

Euler’s theorem

If y = f(x) is homogeneous of degree r and differentiable then

P A A
ox, ox

n

rf (x).
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() Consider
f(Ax,2p) = (Ax)2 (Ap)2 +3(Ax) (Ay) =41 (%),

and the function is homogeneous of degree 1. Now

11 11

1 — - 1 -
f. =Ex 292 4 6xy7, f, =Ex2y 2 _3x*y7

SO
11 11

] L ] L
Mo+ yf, =5 X0y +6xy” +oxy? =3x%y7 = f(x,p)

and Euler’s theorem holds.
(ii) Consider

F(AxAy) = (Ax): (A}t +64x = A7 (x.)

so the function is homogeneous of degree 1. Now
1 1 3 3

3 1! 1
=—x*p*+6, f =—x*y*
S 25 f, rRaltd

SO
301 301

2 2 1 2 2
xfx+yfy=%x4y4+6x+zx4y4=f(x,y),

and Euler’s theorem holds.

TP TPTRN Cod el G0 RSP
(ii)) £ (Ax,Ap) () +(Ay) 3=f(xy)

so the function is homogeneous of degree 0.
fi= 2x(x2 + yz)_l —x’ (X2 + yz)_z 2x =2xp° (x2 + yz)_2
f==2p(x"+ yz)_l + 37 (¢ + 7 )2y = =292 (x7 + yz)_z,

Thus
xf+f, = (2)c2y2 —2)/2)c2)()c2 +yz)_2 =0,

so Euler’s theorem holds.

(V) f(Ax,Ay)=3(Ax) (Ay)+2(2x)’ (Ay)' =3(Ax) (Ay) = 2°f (%, )
so the function is homogeneous of degree 6.
f.=15x"y +4xp* —9x%y°, S, = 3x° +8x°y’ —9x’y?,
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SO
xf +yfy =15x5y+4x2y4 —9x3y3 +3yx5 +8x2y4 —9x3y3 =6f(x,y)

and Euler’s theorem holds.

6. (i) Forthe Cobb-Douglas function
0(AK,AL) = A(AK)*(AL)" = 2O (K, L)

so the function is homogeneous of degree  + £ .

For the CES production function
1

O(2K,AL) = A(a, (AK) +a,(AL)" )’

1

=Q(K,L)(A")r =20(K,L),
so the function is homogeneous of degree 1.

(ii) For the Cobb-Douglas function
Q. =adAK“'I’, Q, = pAK L/

SO
KQy +LO, = adK“L’ + BAK“I’ =(a+ B)Q(K,L),

and Euler’s theorem holds.

For the CES production function
1 1

1 1 1
O« =%A(a1Kp +a2Lp)P 1al/OKp_l, 0, =;A(a1Kp+a2Lp)P laszp_1

SO
1

KO, +10, = A(a k" +a,l ) (a K" +a,l”)=0(K,L)

and Euler’s theorem holds.

(i) For the Cobb-Douglas function
O (AK,AL) = ad(AK )" (AL)
=A“""70, (K,L)

so the marginal product Q, is homogeneous of degree o« + £ —1. Similarly Q, is homogeneous of
degree o+ f—1.

For the CES production function

1-p 1-
1

O, (AK,AL) = A(a, (AK)" +a, (L)) * a,(AK)"" = O (K, L)(*)
=2'0 (K, L),

P
p P!
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so the marginal product Q, is homogeneous of degree 0.

7. As f (x,,x,) is homogeneous of degree r—1 we have by Euler's theorem that

xSt X/, = (r_ l)fl

SO

x12f11 +x1x2f12 :(r_l)xlfy (D

Similarly as f, (x,,x,) is homogeneous of degree r—1 we have

X%, /1 +x§f22 = (r_ l)xzfz (2)
Adding (1) and (2) gives
x12f11 +2x,x, /), +x22f22 = (r_l)(xlfl +x2f2) = r(r—l)f,

by Euler’s theorem.

8. (i) Aset XcR"isaconvexsetif u,ve X = du+(1-2)veX, 0<A<I.
A function f{x) is convex if A/ (u)+(1-2) f(v)= f(Au+(1-2)v)for all points u, v in the
domain of the function.

Si=x fo=x, £,=0, fi, =L f,, =0
so the Hessian matrix is
H(x) 0 1
X) = .
1 0
Principal minors are 0, 0, —1, so the function is neither convex nor concave.

(i) f,=4x’+6xy°, f, =4y  +6x°y
fo.= 12x* +6y°, So=12xy, f, = 12y* +6x°

so the Hessian matrix is

Hix) 12x% + 6x° 12xy
xX,y)= .
4 12xy 12y° +6y°

The principal minors are 12x* +6y°,12y" + 6x” and
(122 + 6x7)(12)7 +6x7 ) — 144x7y” = 72x* + 72" +36x°y”

so these principal minors are >0 on R*. Thus the Hessian matrix is positive semidefinite and the
function is convex.
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(i) f,=-6x+2y+3, f =2x-2y-4, f, . =-6,f =2 f =-2
so the Hessian matrix is

-6 2
H = .
The principal minors are —6, —2, 8 so the matrix is negative semidefinite and the function is concave.

(iv) f. :ex+y+ex_y—%, f,=e" = —%,

. x+y x=y _x+y x=y _ Xty x=y
f.o=e"+e, fxy—e —e ,fyy—e +e

so the Hessian matrix is
ex+y +ex—y ex+y _ex—yj

H(X,y):( x+y y

=
e - —e -

y

e e

The principal minors of this matrix are e*” +¢* and
2 2 . .
(e”y +e ) — (e”y -’ ) = 4¢”* which are all greater than zero on R” and thus H is

positive semidefinite. The function is (strictly) convex.

(V) fv:2_2x_2y7 f:v:_l_zx_zy’ f;cx:_z’ f;cy:_2’ fvy:_2’
so the Hessian matrix is

-2 2
H = .
The first order principal minors are —2 and —2 and the second order principal minor is 0 so the matrix is
negative semidefinite and the function is concave.

(V) fo=l-e =™, f=1-e™, fi=—e' =o', f =o' f, =e
Thus the Hessian matrix is

—e* — "t _ex+yJ

H(x7 y) = ( _ex+y _ex+y :

The first order principal minors are —e* —e*** and —e**” which are both <0 on R* and the second
order principal minor is

ex+y (ex + ex+y ) _ e2(x+y) — exeery
whichis >0 on R* thus the Hessian matrix is negative definite on R* and the function is concave.

9. f =2x—y-3x°, f,="2y—-x, f.=2-6x, f =-1 f =-2
so the Hessian matrix is

H(x’y):(z—m —1)

-1 2
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For the function to be concave we want this matrix to be negative semidefinite. Thus we require all the first
order principal minors to be <0,

that is, 2—6x£0:>x2%.

We also require that the second-order principal minor be > 0,
thatis, -4 +12x-1>0=>x>7/12.

Hence the largest convex domain in E* for which the function is concave is

e

10. () f.=-6x+2y+3, f,=2x-2y-4, f . =-6, f,=2, f =2
so the Hessian matrix is

-6 2
H = .
Leading principal minors are —6 and |H | = 8, so the matrix is negative definite on R* and the function is

strictly concave.

(i) f,=4x’+2xy° =3, f,=2x"y+4y* -8,

fo.= 12x° +2y2, fxy =4xy, fyy =2x* + 2y2

so the Hessian matrix is
12x% +2y7 4xy
H(x,y)= N
4xy 2x"+12y
The first order leading principal minor is 12x* +2y* which is > 0 on the set. The second order leading
g

principal minor is

(1227 +2y7) (207 + 12 ) —16x7y7 = 24x* +132x°y” + 24"

which is also > 0 on the set. Hence the Hessian matrix is positive definite on the set and the function is
strictly convex on the set.

3 iy L3y 3 iy
fvx:_Ex y ’ fvy:Ex y ’ fvy:_ﬁxy

so the Hessian matrix is

HENE R
—3x X

_1 Y Y
H(x,y)—ﬁ 303 1o
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501
The first order leading principal minor is —%x 4y* which is < 0 on the positive orthant whereas the

second order principal minor is

9 3 3 1 _% _3 1 3 3

7 2 2 P
256" Y T 256" YT TR

which is > 0 on the positive orthant so the Hessian matrix is negative definite on the positive orthant and
the function is strictly concave on this set.

(iv) f.=3e", fV:2Oy3, f.=-1/z,

f;cx:?’ex’ f;cy:O’ f;cz:O’ f:vy:60y27 f:vz:O’ f‘22:1/22’

so the Hessian matrix is

3e” 0 0
H(x,y,z)=| 0 60y> 0
0 0 1/z°

The first-order principal minor is 3e* which is positive, on the positive orthant, the second order principal
minor is 180e*y* which is positive on the positive orthant, and the third order principal minor is

180e* y* / z* which is also positive on the set. So the Hessian matrix is positive definite on the positive
orthant and the function is strictly convex on that set.

1. O, =adK“'I’, O, =bAK‘I"",
O =a(a—1)AK*I", Q =abAK"'"", Q, =b(b—-1)AK"L">

so the Hessian matrix is

H(K,L):(

a(a—1)AK*’L’ abAK '[!
abAK“ '’ b(b-1)AK‘L

(i)  For the function to be concave we want the first-order principal minors to be <0 and the second
order principal minor to be > 0. Consider the first order principal minor

a(a-1)AK>L

which is <0 on the positive orthant if Aa(a—1)<0. With A > 0 this requires that ¢ >0 and a <1.
Similarly we require >0 and b <1.

The second-order principal minor is

(4k*'2") [ab(a ~1)(b-1)~a*b* | = (4K*'L) [ab(1-a - b)].

With A >0, a>0,b5>0 for this to be >0 on the positive orthant implies that a +5<1. Moreover
a+b<1with a >0 and b >0 implies that both a and b are <1. Hence the function is concave on the
positive orthantifA>0, a>0,b>0anda+b < 1.
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(ii)  For the function to be strictly concave, the first order leading principal minor of the Hessian matrix
should be < 0 which requires that
Aa(a-1)<0

so with A> 0 we need a >0 and a < 1. The second order leading principal minor must also be > 0 which
requires that ab| 1—(a +b) |> 0. With a> 0 this implies that b > 0 and a + b < 1 as required.

12. As f(x) and g(x) are convex functions

f(Au+(1-2)v)<Af(u)+(1-2) f(v)

g(Au+(1-2)v)<Ag(u)+(1-21)g(v),
for0<A<I.

Let 7 (x) = af (x)+bg(x) and consider
h(Au+(1-2)v)=af (Au+(1-2)v)+bg(Au+(1-2)v)
<a(Af(w)+(1-2)f(v))+b(Ag(u)+(1-2)g(v))
=h(u)+(1-2)h(v),

S0 h(x) is convex.

13. Let x, and x, belongto S* so f(x,)<k and f(x,)<k.
We wish to prove that Ax, +(1—-4)x, € §= for 0< 2 <1. Now as f(x) is convex for 0 < 1 <1,
f(Ax +(1=2)x,) <A1 (x)+(1=-2) £ (x,)
< Ak+(1-2)k
=k.

If flx) is a concave function then S= = {x/ f (x) > k} is a convex set.

5.4
1. Consider a nonlinear equation

F(y,x,....,x,)=0. (5.1)
The implicit function theorem addresses the question when it is possible to solve this equation for y as a
differentiable function of x,,...,x

n*

In nonlinear economic models equilibrium conditions often give rise to an equation like (5.1). In this
equation the y is the endogenous variable and x,,...,x, are the exogeneous variables. Before any

comparative static analysis can be conducted we need to know the condition required to ensure that we
can solve the equilibrium equation for y as a differentiable function of x,..., x, .
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2. (i) Clearly the point satisfies the equation and the function on the left hand side has continuous
partial derivatives. Consider

Fy=4x"—14xy=-10

at the point in question, so an implicit function exists in the neighbourhood of this point.

Differentiating both sides of the equation with respect to x, remembering that y can now be regarded as a
function of x gives

3x? +8)cy+4)c2%—7y2 —14’9’%:0
SO

%(4)52 —14xy) =7y —=3x" +8xy
and

dy 7y* —3x" +8xy
dx 4x* —14xy '

(i) The point satisfies the equation and the function on the left hand side has continuous partial
derivatives. Moreover

Fy=8x+4y’ =1

at the point, so an implicit function exists in the neighbourhood of this point. Differentiating both sides of
the equation with respect to x, remembering y can be treated now as a function of x gives

dy s dy

2x+8y+8xd +4y° i =0
SO

dy 3 _

a(4y +8x)——(2x+8y)
and

ﬂ:_ 2x+8y

dx 4y’ +8x

3. The point satisfies the equation and the function of the equation has continuous partial derivatives.
Consider
Fy=2x,4+2y=2

at the point. So such an implicit function exists. Differentiating both sides of the equation with respect to
x, and x, gives

oy
ox,

oy

1+3x2+2x2§— =0

+2y——
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SO
DY o (x,+y)=—(1+3x,)

ox,
and
dy __ 1+ 3x, _ 5
ox, 2()62 + y)
at the point in question.
Similarly
Iy ay _
3x,+2y+2x, 7%, +2x, +2y§x2 =0
giving
dy _ 3x+2y+2x, 5
ox, 2(x,+y) 2
at the point.

4.  Write the equilibrium condition as
Y-C(Y)-1(Y)+M(Y)-G-X =0.

We assume the functions have continuous derivatives. Consider
F,=1-C'-1I'+ M.

For a solution to exist we require
I-C'-1I'+M'"#0.

Differentiating our equilibrium condition with respect to G, regarding Y as a function of G and X gives
ﬂ_c'ﬂ_['ﬂ+M'ﬂ_1:0

oG oG oG oG

SO

oY _ I
oG 1-C'-I'+M"

5. The point satisfies the equations and the functions have continuous partial derivatives. The Jacobian
determinant is

4
=P

=15y} y; -2y, =-2
2)/’2 3)}; y1y2 yl

at the point so the implicit functions exist.
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Differentiating both sides of the equations with respect to x, treating y, and y, as functions of x, we have

2y1%+3y§ dy, [dx =2x.

By Cramer’s rule

11
dy |2x 3)/22 B (3)’22—2)‘)
dx syt 1] (15pf 2 -2))
2y, 3y,
and
5p) 1
dy  2» 3y

av, ~ (15yiyi-25) U2 ) sisi =2

At the point in question

dy _ dy _
dx, =1 and dx, =1.

6. (i) Write our equilibrium equations as
F'(Y,r,GGM)=Y-C(Y)-1(r)-G=0

F*(Y,r,G,M)=L(r,Y)-M =0.

If we assume that all functions have continuous derivatives, then it is possible to solve for Y and r as
functions of G and M at points where

F; erl 1 _ Cl _[/
F} F? L L

Y r

1=

is nonzero, that s, the condition we require is
L(1-C)+IL, #0.

(ii) Differentiating both sides of equilibrium equations with respect to M, remembering that now we
regard Y and r as functions of G and M we have
oY o~ Y gy Or _
o~ Com om0

LS 41,9 1

"OM " oM
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which in matrix notation is

oY
1-C¢" -I'\l'om | _(0
L, L)l .or| \1)
oM
Using Cramer’s rule we have
0 -r
oy _ |1 L] _ I
oM |1-C' -I'| L(L-C)+IL,"
L L
and
1-C" 0
or _ L, 1 _ 1-C'

oM (L (I1-C)+IL,) L (1-C)+IL,

Using the apriori information we have on the signs of derivatives we obtain

oY _ “ve e
M (—ve)(+ve)+(—ve)(+ve) -—ve

= +Vve.

So M and equilibrium Y move in the same direction,

Or _+ve _ _

oM~ —ve ¢

So M and equilibrium r move in opposite directions.

5.5
1. (i) Forafunction f(x) of a single variable the Taylor's approximation of order three is

70 1)+ 7 ()= + L e G gy

Zf(x0)+f’(x0)dx+#;co)dx2 +%dx3

where

Evaluating our approximation at x, =4 and dx = 0.05 we have

2 3
/(4.05) = V/4.05 = 2+ 1(0.05) ~ 2 (0.05)" +515(0.05)

=2+0.0125-0.000039 +0.0000002
~2.012461.
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e AU
rE==ent )
R (-3

SO
5 1 1 52,1 3
2~ L -1 L
(x+1) 1+2dx 8dx +16dx.
For dx =0.2 we have

(12)2 ~14+2(02)-£(02)" +75(0.2)’ =1+0.1-0.005+0.0005 = 1.0955

so all these render 1 at x =0, thus

e’ z1+dx+%dx2 +de3

3!
and

¢ #1402+ 5(0.2) +£(02) =1+0.2+0.02+0.00133 =1.22133
(© f(x)=logx f(1)=0
f(x)=1 F(1)=1
/"(x)==k f"(1)=-1
(=3 (1)

SO

logx ~ 0+ dx —%abc2 +%dx3.

For dx=0.2 we have

log1.2~0.2-2(0.2)" +5(0.2) = 0.2-0.02+0.00266 = 0.18266.
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2. () f(x)~ /(%) + /(%) de+Ldx'H (x,)dx,

where Vf (x) is the gradient vector of f(x), H (x) is the Hessian matrix of f(x).

(ii) - For this Cobb-Douglas function
3 3 1 _1
fL)=1 fi=fxix, fi=3

4 R
SO
1
Ve =4
3
4
Moreover
3 _7 3 3 3 _1 3 1 _5
ﬁl__EXIA‘XZA" ﬁ2:16‘x14xx4’ ](22_—16)614)624,
SO
-1 1
_3
w3 !
Thus

f(x,x,) z1+%dx1 +%dx2 — 3 ) +%dxldx2 N

32 32

In moving from the point x =1, x; =1 to the point x, =1.1 and x, =0.9 dx, =0.1 and dx, =-0.1
Thus we have

(1L1)¢(09)F =1+L(0.1)+3 (-0.1) -2 (0.1 + 2

2 2
1 > 2 (0.1)(=0.1)" = 55(-0.1)
= 0.94625.
3 3 1 _1
(i) dy= fdx, + f.dx, =%x1 dxddx, +%x(‘x24dx2

Atthe point x{ =1, x; =1 with dx, =0.1 and dx, =—-0.1 we have

dy = 1(0.1) +2(-0.1) = ~0.05.

3. The total derivative is defined as

& oy oy dy,
dx, Ox, Ox,dx,’
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The two concepts differ when x, is itself a function of x,. If this is the case dy/dx, is an approximation
for the rate of change in y when x, changes by a small amount, taking into account as it does the direct

effect of this change given by 2y /dx, and the indirect effect through x, given by g—;%
1 1
Y 32 9V _ @ _ 1
2x, =3x,, ox, =14x,, & x )
jTy =3x] +14x,/x,.
1

4.  We know that
dy = f,dx, + f,dx,.

Taking the differential of both sides remembering that f, and f, are functions of x, and x, we have
d’y =d(dy)=(f,dx, + f,dx, )dx, +( fodx, + frdx, ) dx,
= fi(dx,) +2f,dxdx, + f,dx
= dx'H (x)dXx.

Exercises for Chapter 6

6.1
1. (i) Critical points where
f=3x1+9x,=0
f,=3x+9x, =0.
From the second equation we have x, = x; /3. Substituting in the first equation gives

4
"3—2+9x2=0:>x2(x§+27)=0

so x, =0 or x, =-3. The equation then has two critical points
* [Oj : [ 3j
x1 = or x2 = .
0 -3

fll :6x1’ flz =0, fzz :_6x2

Now

so the Hessian matrix is

H(x)= {6x91 —6)3'
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and
H(x) {g zj.

The first order principal minors of this matrix are 0, 0 and the second order principal minor is -81, so x, is a
saddle point. Also

)82

The first order leading principal minors of this matrix is 18 and the second order leading principal minor is
233 so the critical point is strict local minimum.

(i)  Critical points where
fi=-3x"+y+1=0
fy=x+2y=0

so x =—2yand

—12y2+y+1:O:>(3y—l)(4y+l)=0:>y=% or yz—i.

The function then has two critical points
1

_2
1
3

2
1
4

Now

f:vcx :_6x’ f:vcy :1’ f:vy :2

so the Hessian matrix is
—-6x 1
H(x)= .
(x) [ 1 2}

Now

H(x;):(‘l‘ ;j

whose leading principal minors are 4 and 7 so H (x1 ) is positive definite and x, is a strict local minimum.

Also
. -3 1
H(x2):( 1 2}’

whose first order principal minors are -3 and 2 so H (xz) is indefinite and the point is a saddle point.
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(iii) - Critical points where
f.=4x+2x-6y=0

S, =—6x+6y=0

thus x = y and
4 —4x=0= x(x’~1)=0

sox=0orx=1orx=-1. The function then has three critical points
. (0 . (1 . (-1
xI:O,xzzl,x3=_1.

The Hessian matrix is

1 (x) = {12)8 +2 —6J

H(xf)z(_é _Zj.

First order principal minors are 2, 6, whereas |H (x )| =—24 so this matrix is indefinite and x, is a

SO

saddle point. Also
. 14 -6
H(x,)= :
(x2 ) [_6 6}

whose leading principal minors are 14 and 48 so this matrix is positive definite and x, is a strict local
minimum. Similarly x; is a strict local minimum.

(iv) Critical points where
Ji=2x,-3x,=0
f,=6x,=3x, +4x,=0
fi=4x,+12x, =0,

3 14

giving x, =-3x,, x, = 5% =5 % which is only true if x, =x, =x, =0. Thus the function has one

critical point
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The Hessian matrix is

2 -3 0
H=|-3 6 4|
0 4 12

The leading principal minors of this matrix are

3 2 20 2 -3
2, ‘:3, Hl=|-3 6 4=4(-1)" ‘:
-3 6 9 -14
9 -14 0

so the matrix is positive definite and the critical point is a strict local minimum.

(v) Critical points where
fi=x4+2x,=0

f,=—14+x+2x,=0
fi=x+x,+6x;,=0,

S0 x, =—2x,, x, =11x,, and x, =1/20. Thus the function has one critical point

1
* 1
=— 11/|.
* 720
-2
The Hessian matrix is
2 0 1
H=|0 2 1
1 1 6

which has leading principal minors

0 -2 -11
2 0 sal-2 =11
2, =4, |H| =|0 2 1| =1(-1) =20.
0 2 2 1
1 1 6

All the leading principal minors are positive so H is positive definite and x” is a strict local minimum.

(vi) (d) The first order conditions are
f.=x+6y+6=0
Sf,=6x+2y-3z+17=0
f.=-3y+8x-2=0
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and the first of these equations gives x = —(3 +3y) so substituting into the other equations gives
-16y—-3z=1
-3y+8z=2,

Using Cramer’s rule to solve these equations gives

1 -3

2 8
== 1 —_14/137
Y106 -3

-3 8

-16 1‘

-3 2
z="137 =29/137

x=-3+42/137=-369/137,

and this is the one critical point the function has.

The Hessian matrix is

2 6 0
H=|6 2 -3]|
0 -3 8

2 6
which has leading principal minors of 2 and ‘6 2‘ =-32, so H is indefinite and the critical point is a
saddle point.

2. Critical points where
fX:y2+3x2y—y=y(y+3x2—l):O (1)

fy=2xy+x3—x=x(2y+x2—l)=0. (2)
Clearly y =0 and x = 0 define critical points. When y =0 we have from (2) that x(x2 - 1) =0 which gives
x=0, x=1, or x=-1. When x =0 from (1) we get y(y—1)=0 which givesy=0ory=1.

Alternatively critical points are defined by

y+3x2-1=0
2y +x°=1=0
which yields 5x* =1 so x =—L or ——L with y= 2 in both cases.
NG J5 5
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All'in all we have six critical points
ES [OJ ES [OJ ES [IJ * [_IJ * 1/'\/§ ES _1/'\/5
X, = , X, = , X3 = , X, = , Xg = , Xg = .
0 1 0 0 2/5 2/5
The Hessian matrix is

H(x)= 6xy 2y +3x% —1
2y+3x° -1 2x '

* 0 - . . . . * . .
H (x1 ) =l Oj which is indefinite so x, is a saddle point.
N 0 1 . . - .
H (xz) =1 o which is indefinite so x, is a saddle point.
N 0 2 . . . .
H (x3) = which is indefinite so x; is a saddle point.
20
N 0 2 . . - .
H (x4) = which is indefinite so x, is a saddle point.
2 2
12 2
|55 S
Hix)=|"
5 s

The leading principal minors of this matrix are 12/5+/5 and 4/5 so H (x; ) is positive definite and x; is a
strict local minimum.

S
. 545 5
H(x6): 2 2

5 s

The first leading principal minor is —12/5+/5 and the second leading principal minor is 4/5 so H (xé) is

negative definite and x; is a strict local maximum.
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6.2
1. (i) Total profitis given by

1 1
Hzp(L2 +K2j—wL—rK.

(ii)  The critical point is obtained from
-1
M, =2pL?-w=0

1
IT, =%pK 2-r=0,

so we have one critical point
L=p’/4w’, K =p’/4r.

(i) For a global maximum we require that the objective function IT is concave on the nonnegative
orthant. The Hessian matrix of this function is

_3
pL? 0
H(L,K) =—% |
0 pK*?

The first order principal minors of this matrix are
—%pL_; and — %pK_g

which are both <0 on the nonnegative orthant and the second order principal minor is
|H|= % PLK

which is > 0 in the nonnegative orthant so H(L,K) is negative semidefinite on the domain of our function,
and thus IT is concave on its domain. Any local maximum will then be a global maximum.

(V) L (Ap,aw)=(Ap)’/4(Aiw)’ =L (p.,w), so the demand for labour is homogeneous of
degree 0. Similarly for K"

2 2 2

oL p . p L * p
Vv =— AL ~— Aw. Similarly AK™ ~ —S—Ar.
R T g o y 27 0

(vi) Substituting Z and K~ back into the profit function gives the maximum profit function
2

1 *l . . p2 p
_ 2 2 | _ £
M(p,w,r)—p(L +K j wL —rL 4w+4r
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OM _ P P p P
oM _ P | P ~| L4 2 A
op 2w+2r:>AM (2w+2rj P

2 2

OM _ _ P \p~—LP Ay
ow 4w’ 4y’
oM __ P ’

)4
L =AM =~—=—Ar.
or 477 477 "

2. (i) Total profitis given by
1 1
[1=4pLl*K? —wL—-7K.

Substituting into the first order conditions gives

11

\/EpL 432
4 4
:>L*:—42p2, K*:83L.
rw rw

(i) For a global maximum want IT to be concave on its domain, the nonnegative orthant. The
Hessian matrix is

3 1

3 11 1,21
_ZL4K2 3L4K2
H(LK)=p oL

231
%L“Kz —_JAK 2

The first order principal minors are

3

71 13
_ZPL *K? and —L*K 2

which are <0 on the domain of IT. The second order principal minor is

_1 .2 ‘% -1
|H|=5 P’ LK

which is >0 on the domain. Hence the Hessian matrix is negative definite, TT is concave on its domain,
and any local maximum is a global maximum.
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4(Ap) .
(iv) L'(Ap,Ar,Aw)= % =L (p,r,w), so L is homogeneous of degree zero.
(/Ir) (/Iw)

Similarly for K.

oL _ 8p' «_ 8p'
v) S = 2P S AR -2E A
v) ow rw3:> oW v
oK° _ 24p* . 24p'
7—— " :AK R—— AI".
rw rw

(vi) The maximum total profit is formed by substituting L’

and K~ into IT. Thus the firm’s profit
function is

xL sl
M(p,r,w):4pL ‘K 2—wL —rK =4p*/r’w

?—A}{ =16p’ /r’w= AM ~16p°Ap/r*w
oM _ _4p4/r2w2 =AM ~ —4p4Aw/I”2W2
ow

oM _

P =-8p*/r'w= AM ~-8p*Ar/r'w.

6.3
1. The Lagrangian function is

zZ :()c1 +1)()c2 +2)+/1(12—2x1 —4x2).

The first order conditions are
Z,=12-2x,-4x,=0
Z =x,+2-21=0
Z,=x,+1-41=0

=x, =2x,+3

:>x2=Z, X ==, A=—.

The bordered Hessian matrix is

02 4
H=|2 0 1|
410
-8 0 4 < 4
H|=[ 2 0 1=1(-1)""] ‘=16,
2 1
410

so we have a local maximum.
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2. (i) The Lagrangian functionis Z = x,x, + A(Y — p\x, - p,x,) .

(ii)  The first order conditions are
Z,=Y=pX —px, =0
Z =x,—-Ap, =0
Z,=x,—Ap, =0.

(i) The border Hessian matrix is

0 p p
H=|p 0 1
p, 1 0
A=) a7 R
=2p,p, >0,

so the second order condition holds for maximization.

(iv) The second two of the first order conditions imply that

b
X, =X

P

so substituting into the first of these gives
x, =Y/2p, x,=Y/2p,.

Also x, (Ap,,AY) =AY /2.p, =x, (p,,Y) s0 x, is homogeneous of degree 0. Similarly for x,.

Suppose prices and income increase so they are A times their original values. All that changes in our
problem is the constraint which now becomes
Apx, +Ap,x, =Y.

But this is the original constraint so nothing changes in the problem. Thus we would expect this result.

(v) M(p,p,.Y)=xx,=Y*/4pp,

oM Y? Y?
(a) __ ~AM~-—Y"_Ap
op, 4pp, 4pip,

oM __ Y . Y
(b) 5 = AM AY.

2

2p; p, 2pp,
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(vi) From the first order conditions we obtain
* Y _ ﬁM

A =x/p, = =—.
P 2pp, OY

3. (i) The problemis,
Minimize wL + rK
11
subjectto 4K*L* =0,
so the Lagrangian function is

11
Z:wL+rK+/1(QO—4K4L4J.

(ii)  The first order conditions are
11

Z, =0 —4K*L* =0
3
Z, =w—AK*L*=0

3 1

Z, =r—AK ‘I* =0.

(i) The deriviatives needed to form the bordered Hessian matrix are
1 3 3 1

g, =K*L*, g =K 'L
3 1.7 1 33
ZLL:_Z}“KA‘LA" ZLK:—ZEK 4L4

3 71
Ly :—Z/IK ‘L4,

so the bordered Hessian matrix is
o 0 4K°L 4KL
IL_I(L,K,/I)ziL_“K_“ 4K’L -3AK* -IKL
4K1?  —AKL -3AL

As our problem is a minimization problem we require |1L_I | <0 at the critical point obtained from the first
order conditions.

(iv) From the last two first order conditions we have

w_K _g_wL
r L r

Substituting into the first of these conditions gives
1

ooy ieo = o($J () = =[5 ()
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(v) The cost function is
1
M (w,r,Q,)=wL +rK" =02 (rw)?/8.

(vi) gg =0, (rw)? /4.

(vii) From the first order completions

1
A =rK*L * =0, (rw)2/4=0M /00,

4. () The problemis,

Minimize p,x, + p,x,

subjectto x/x) =u_,

and the Lagrangian function associated with this problem is
Z = pix + pyx, + /1(”0 _xlax;)

The first order conditions are

Z =u,—x'x)=0 (1)
Z =p —alx'"'x; =0 (2)
Z,=p,-bAxx;"=0 (3)

(i) Z,=-a(a-1)Ax"x;
Z,=—abAx!"'x)"!

Z,, ==b(b-1)Ax/x;

so0 the border Hessian matrix is

2 2
0 ax, x, bx; x,

H=x"7x"| axx; —a(a - 1)/1)c22 —abAx,x,
bx!x,  —abAxx, —b(b—1)Ax;

(i) As this is @ minimization problem we require |1L_I | < 0 at the critical point obtained from the first
conditions.

(iv) From (2) and (3)
@ _po o _ben
bx,  p, > ap,
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Substituting into (1) gives
u, —x'"" (2—?) =0.
2

Solving for x, and using the factthat a + 5 =1 gives

b
=y |2
7 = uo(bpl j |
By symmetry,
X, =u, (%j .
ap,
(v) Substituting X, and x, into the objective function gives

b a
ap, bp,
M=pu, |l —— +pu0(—j
: (bpl j ? ap,
= pipyua b + pyplu,a b’
= pfphua ‘b’ (a+b)

_ —ab—b a_ b
=a p1p2u0’

as required.
(v) S¥=aa b’ p" piu,,
1

thus for small changes
AM [ a"b™" p;” phu Ap,.

6.4
The set of feasible solutions is a hyperplane as it is the set of points which satisfy a linear constraint so this
set is a closed convex set. Consider the Hessian matrix of the objective function which is

_1
R
H(xl,xz) = 0 1
X

The first leading principal minor is —%< 0 for all x=0 and the second leading principal minor is

X

1
3 3
XX,

Thus there will be a unique local maximum which is also a global maximum.

>0 for all x=0 so this matrix is negative definite and the objective function is strictly concave.
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1. (i) The Lagrangian function is

I 1
Z=—-—+(Y-px - px,).
xl x2

(ii)  The first order conditions are
Z,=Y—-px —px,=0

1
Z1 :_Q_Z’pl =0
X,

1
1

22 :—z_ﬂ«pz =0.
x2

(iii) The bordered Hessian matrix of this problem is

0 p )2
I__I(xlaxz): D _% 0
1
b, 0 _%3
2
— 2+1| P P, 3+1 P P,
H|= -1 + -1
A =n (07 /% P2(-1) 2/% 0
2pr 2p?
:—}? +—€2>0,
X, X

for all positive x, and x,. Thus the second order condition holds.

(iv) From the first order conditions we have

Ly )
X12 P> P>

|
U
¥
|
=

Now
X, (AP, Apy,AY) = /IY/(M +A' DD, ) =x (p>p.Y),
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s0 x, is homogeneous of degree zero. Similarly for x;.

0 B (A YRS

M(pl’pZ’Y)

()5M - (f [P, )Y = AM =—p, (f [P, )Ap, 1Y
(0) M (fp, +p, ) 172 =AM = (o, +p, ) AY /Y2

(vi) From the first order conditions

L ) ow

A =—upG= .
px Y? oY

Exercises for Chapter 7

7.2
1. Total profitis

1 1
I—I:p(L2 +K2J—WL—rK.

Let M be the maximum profit function. By the Envelope Theorem

1 —— =" =-L =-p*/4w’
® aw  Oow|s P
(i1) oM _dl =—K =-p°/4r
o or e
s L
(iii) oM _Aal —_J24Kg2=P P
p  Ip|; 2w 2r

which are the same results we got in exercise 1 of 6.2.

2. Total profitis

1 1

M=4pL*K?> —wL—rK.
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Let M be the maximum profit function. By the Envelope Theorem

4

R
ow  ow|; rrw

4

(||) é’_M:ﬂ :_K*:_gf

or  Or| rw
oM Al o

iy L0 —4LK 2 =16p rw,
Jp Op rx

which are the same results we got in exercise 2 of 6.2.

7.3
1. (i) The Lagrangian function is

Z =xx, +/1(Y—p1x1 —pzxz).

Let M be the indirect utility function.

Then by the Envelope Theorem

oM_oz| .. X
op. Op, .. L Apip,’
oM_oz| .. Y
op, Opsl, . T Apip,’
oM _o7| _,._ ¥

ay oY, 2pip, ’

which are the same results we got in exercise 2 of 6.3.

(ii)  The Lagrangian function is

I 1
Z=————+2(Y-px —px,).
XX

If M is the indirect utility function, then by the Envelope Theorem
oM oz . Ap+p,
_— = —Z, ‘xl = ,
é’pl é’pl ;f’xl’ \/;IY
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oM _oz| .. n+p

AN
2

om _oz| . (In+p))

oY ovl. y? ’

which are the same results as we obtained for exercise 6.4.

2. The Lagrangian function is

11
Z:wL+rK+/1[Q0—4K4L4J.

If M is the cost function then by the Envelope Theorem

1
oM _oz L(QM_)
ow  ow|: 4 w)

oM _oz K(QMK)
or  Orl¢ 4 r)’

0, (rw)%
g

oM 57

= = Zl* =
20, 90,

2

3. The Lagrangian function is
Z = px, + p,X, +/1(u0 —xl"xg).

Let M be the minimum value function. Then by the Envelope Theorem

oM oz| _. [bp1 j
= = x2 = uo —_— N

op, Opyf; ap,

oM 37|

SR = A=a bt pipl.

Ou.  Ou, ) b P
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14
1. (i) We write the Lagrangian function as

Z=U (x,x,)+A(p,x, + p,x, = Y).

Then the first order conditions are
Z =U+Ap =0
Z,=U,+Ap,=0
Z,=px,+p,x,-Y=0.

(i) The bordered Hessian matrix is

0 p b
H(xl’x2): P Ull U12
p, U, U,

and the second order condition is
|1L_I | >0

at the critical point obtained from the first order conditions.

(iii) We have
pdx, +xdp, + p,dx, + x,dp, —dY =0
U, dx +U,dx, + Adp, + pdA =0
U, dx, +U,,dx, + Adp, + p,d 1 =0.

Isolating the differentials of the exogenous variables on the right hand side we have
pdx, + pydx, = dY — x,dp, —x,dp,
U,dx +U,,dx, + pdA=-Adp,
U, dx, +U,,dx, + p,dA=—Adp,

or in matrix notation
dA dY —x,dp, — x,dp,
H| dx, |= ~Adp,
dx, —-Adp,
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(iv) In(1)let dp, =dY =0

Then we obtain
dA —X,dp,
H| dx, |= 0
dx, —Adp,

so using Cramer’s rule to solve for dx, we get

0 -x,dp, p,

P 0 U,

di. = p, —Adp, U,
" A

Expanding the determinant in the numerator using the second column gives

32

— H
dx, = —x,dp,H,, — Adp, ‘7 J

where H,, and H,, are the cofactors of the (1, 2) and (3, 2) elements of H.

Dividing both sides of this equation by dp,, and remembering that the ratio of differentials is a derivative

we have

0N o gy 2
on. TH A ¥

(v) Let dp, =dp, =0 in (1) to obtain

dA dy
H|dx |=]| 0
dx, 0

and using Cramer’s rule to solve for dx, we have

0 dY p,
p 0 U,
dx, = p, 0 _Uzz .
— dYH
| | g‘u

Again dividing through both sides of this equation by dY gives
(@j ' _ i 3)
2Y )Prices

1
|H
constant
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(vi) If utility remains constant then
dU =Udx,+U,dx, =0

or
Y dx, +dx, =0.
U

2

But from the first order conditions
U_n
U, p,

so holding utility constant requires
p,dx, + p,dx, =0.

But taking the differential of both sides of the budget constraint gives
pdx, +x,dp, + p,dx, + x,dp, =dY

or
pdx, + pydx, =dY — xdp, — x,dp,.

Thus holding utility constant requires that
dY —x,dp, —x,dp, =0. 4)
(vii) Suppose that Y and p, change in such a way that utility remains constant and suppose further
p, does not change.
Then we must have
dY —xdp, —x,dp, =0
dp, = 0.

Substitute these conditions in (1) gives

dA 0
Hldx |=| 0 |,
dx, —-Adp,

and by Cramer’s rule

0 0 D,
b 0 U,
dx — p, —Adp, Uy
= —
|[__I| __ dpz_Hn
]
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SO

ox, _ —/15_132 5
op, Juiility | - O

constant
Substituting (3) and (5) into (2) gives Slutsky’s equation

Ox _[ 9% . (&j
op, \Ip Jutility T\ SY JPrices

constant constant.

(vii) The substitution effect of a change in p, on good 1 s

ox, _—-JH,,
op, Jutility  |H|

constant

Clearly the substitution effect of a change in p, on good 2 is

ox, _—AH,
Jp, |Utility 7|

constant

But as the bordered Hessian matrix H is symmetric, H,, = H,, and the substitution effects are the same.

2. (i) Multiply both sides of (7.7) by p,/x_ we have

0% |P, | 5% N (%j P
op, ) x, op, JUtility  x, >\ AY )Prices X,

constant constant

Now we can write

o [2x Py _P% (0% Y
2 8Y JPrices Y \AY JPrices x,

constant constant

where
a, = the proportion of income Y spent on good 2

n, = income elasticity of demand for good 1.
Thus in terms of elasticities we can write Slutsky’s equation (7.7) as
€y = & — Oy,

where e, is the cross elasticity of demand.
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y 0 0
(”) & tép = Of,_)Cl . &+ Sl . B
p, )Utility x| Jp, JUtility x,
constant constant

:ﬁ(plﬁzz +pl‘_132).
1

But the term in the bracket is obtained by multiplying elements of the first column of H by the
corresponding cofactors of the second column of H so by our theorem this term is zero and thus

g, +¢&,=0.

7.5

1. (i) The Marshallian demand functions are the optimal point of the following problem:
max imize xfxl

subject to DX +px, =Y

The Lagrangian function associated with this problem is
Z =xix) +/1(Y_p1x1 _pzxz)

and the first order condition are
Z=ax'x -Ap, =0
Z,=pBx)"'x*-Ap,=0
Z, =Y —px, —p,x, =0.

From the first two equations we obtain
9% Py Pan
Bx. b, ap,

Substituting into the third equation gives

o= aY
L (at+B)p,
From symmetry
p—

(a+B)p,
These are the Marshallian demand functions (we assume the second order conditions hold).

(ii)  The indirect utility function is the maximum value function

a B a+p
e s _| @ ﬁ Y
Ao =< [ 2] (]
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(i) From the consistency properties
V(p.e)=u,

(T2 (az5) e = a2 (5]]”

(iv) By Shephard’s Lemma the Hicksian demand function X, is given by X, = j—e, SO

SO

y4)
l-a-p
B a B a+p B a-1
% - u(& P uf 22 (&j
a p p a
l-a-p
B a B a+p a a
_ u(pl Py u(& (plj a
| \a) (B ] p)\a) p
1
- - s
a ﬂ DH—ﬂ 1 a+
_ u(& P 1:ua+ﬂ(apzj ’
\aJ\B) | p Bp,
By symmetry
1 a
_— a+p
)—szum—ﬂ(ﬁplj .
ap,

2. (i) The Hicksian demand functions are the optimal point of the following problem:
min imize DX, + p,x,
1
subject to (xf’ +x2”)ﬂ =u.

The Lagrangian function associated with this problem is

1
L:p1x1+p2x2+/1(u—(x{’+x§’)ﬂj

and the first order conditions are
I-p

L =p, —/I(x{’ +x2")7x1”_1 =0

I-p

L, =p, —/I(x{’+x2”) rx =0
L, :u—(xlp+x2p); =0.
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From the first two equations we have

p-1 ﬁ
P, Xy P,

Substituting into the third equation we have
1

ﬁ g xp(p"+p") %
u=|x) (%j || =222 where o = p/(p—1)
2

SO

and

(p7+p7)

(ii)  The expenditure function is the minimum value function of this problem that is
__ u(p’+p) SN
e(PaU) =Pt PyX, :(1—21) = ”(p1 TP, )U :
(p7+p7)

By the consistency properties
e(p,V)=Y

SO
1 1

V(pr+ps) =y=V=y(pl+p7)°
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(iii) By Roy’s Identity the Marshallian demand function is given by
oV

. op,
Y=oy

ay

—(—ijy(pf’ py)

Q=

(pr+p7)
o-1

__ P
p+py

By symmetry
o-1
x; = % .
P tp;

3. (i) The conditional demand functions for inputs are the optimal point of the following problem

min imize WX, +W,X,

1
subject to y= [xf' +xﬂﬂ .

The Lagrangian function is

1
Z =wx, +w2x2+/1[y—(x{’ +x§)ﬂj,

and the first order conditions are

1—7,0
Z =w —i(x[’ +x§’) rpx =0
2

The first two conditions give

p-1 c
W, X, 1 W, 4 W,
_1:(_1j :))Clp :—lx; :)xlp :(—lj Xg, where o = P

W,

Substituting into the third condition gives

o

1 o
o o P P
wl+w ) _ wyy
y:[( Wy sz T b
2 (w{’+w§’)p
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By symmetry
%
X =

(wl" +w§)”

(ii)  The cost function is the minimum value function of this problem, that is,

w +wy 1
c(w,y)zwl)_c1 +W,X, =y(1—2)1= (wl" +w§)" )
wy +w§)”
(iii) Consider
ﬂc o o I_TG o-1 —
ow, :y(wl W, W=

Similarly oc =X,, S0 Shephard’s Lemma holds.
ow,

4. (i) The conditional demand functions are the optimal point of the following problem
min imize WX, + WX

Lt

subject to 100x2x? = y.

The Lagrangian function associated with this problem is

11
Z =wXx, +w,Xx, +/1(y—100x12x24j,

and the first order conditions are
1 1
Z, =w, —50Ax,2x} =0
1 3
Z,=w, =25Ax?x,* =0

1 1
Z, =y-100Ax2x} =0.

From the first two equations

w, 2x,
w, X
SO
_2w,x,
= .
W
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Substituting into the third equation gives

1
ow. )2 3
y=100( JVVZJ x!

1

SO

4

%= 2V
> 100
4 2 4

1
¥ _2W2( Y j3 W 3_( Y j3 2w, P
w100 | 2w, 100) { w )~
(ii)  The cost function is the minimum value function for this problem that is

c(w,y) = WX, +W,X,
-1 2
w3 Y w, )3
) el (31

—w | 2
‘Wl(looj
2

4
3002 1
%(ﬁoj i ()

and

8]

4 4
3 3

(i) Marginal cost is

@Z(Lf : (2m,)

W=

dy \100) " 50 ¢

Now from the first order conditions

1 1 1
W o Yy é W@
2w, 100 2w,

(iv) The factor demand functions are the optimal point of the following problem

11
max imize IT= py—wx, —w,x, =100px?x; —wx, —w,Xx,.
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The first order conditions are
11
IT, =50px, 2x) —w, =0

13
IT, =25px?x,* —w, =0,

so from the first condition

1
2 2 !
501{ szzj xi=w

Wl
thus
1 1
ri=M 2w, 2:(2W1W2)2
> 50p w, 50p
and
. (SOp)4
X =53
4w w;
. _(50p)’
X =
2ww,

The profit function is the maximum value function of this problem that is
, ._(50p)" _(50p)" _(50p)

k. ok
* = 2 4 * —
IT (w,p)-lOOpx1 X-wx —wyxy =—— - — - ——
ww,  2wiw,  4ww,

(SOp)4
4wfw2 '

(v) By Hotelling’s lemma the firm’s supply function is given by
At (50p)’50 50*p°
é’p_ W12W2 _lewz'

¥ (w.p)=
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Exercises for Chapter 8

%2 ()  The ordinates for the subintervals are
y =0
.
Vi = 1

SO

S, :%(y2+...+yn+l):n—12(1+2+ +n) = %(H 1)—)%asn—)oo

(i)  The ordinates for the subintervals are
» =0

SO
1 _1 _1(,.3, 1
Sp = ;(J’2+ A Vo) = ?(1+22+...+n2)—€(2+ +nj
—)laSI’l—)OO_
3
(iii) The ordinates for the subintervals are
34 =0
3
=l
3
» <)
yn+l_ 1
SO
_1 1
Se=—(1+- +yn+1)—?(1+2+ wn) = Lon? (1)
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8.3
1. (i) This function has a maximum at x = 0 and cuts the x axis at x=—4 and x = 4.
So we want
4
=256/3.

-4

4
I:J. 16—x*dx=16x—x"/3
-4

2. Required areas are given by the following definite integrals:

.o 1 3

Q) [ xae=222| =22
J1 3 1 3
o1 x51 1
(i) T+xtde=Tx+"— =7—~.
J 0 5 0 5
.0 % o) L
(ii) (x+l) dng(erl)Z =—
J -1

-1
2

[ ’ (5xz+2)4
(i) | x(5x°+2) =g | ~ 9856460025 =5796.375
J1
1
o1 -2 2 1 2 2
1
(V) .0(X+1) dx-—(x+1) . —mo—g.

1. () I=]9x7 —7x2dx=—2x4 —Zx3 +C.
4 3

~ 1 1

(i) 7=|(1+x)2dx=2(1+x)2+C.

(i) I= 3xe"2dx=%e"2 +C.

od 72
(iv) IT=|x"+2x"dx= —%—%xs +C

o 1 1 3 1

(V) IT=|x?—x2dx==x2-2x2+C

5

(x+1)dx=%(x2 +2x+7)E +C.

5 1
[—10)62 +6x2j
(vii) 1=

AN AN s z‘1+
{xz —xzj dx=4(x2—x2j

x* 2 e
(viii) I:I dx:—g(l—x )2+C

1

(1—)65)E

SR w

(i) 1=|(x*+2x+7)
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2. () Letu=+x+1s0x=u’~-1, dv/du=2u and dx =2udu. Then
J.xlex+ldx = J.(u2 —1)2 2u'du = 2J.u6 —2u* +u’du

3

7
; 7 3
:2[”__2u5+lu3J+C:2 (x+1) —2(x+1)§/5+—(x+1)2 +C.
7 5 3 7 3

(u2 —2) 2udu

(i) Letu=+/3x+2 so x= and dx= then

2
J.x2 /A3x+2dx zij.(u2 —2) u udu zij.u“ —4u® +4du
27 27

zi(lus —iu3 +4uj+C
27\5 3

Substituting u = (3x + 2)% into this expression gives the result.

(u* -14) i
— and dx =%. As x ranges from 0 to 2 u ranges from

J14 to ~/22. Moreover % does not change sign. Thus

V2 (u® —14)udu 3 =
Py (£ ~14Judu 1 (-
8 i 3

u 8 Ji

:%G(zz)i —14\/2_—§(14)§ +14\/ﬁj
(23v14 -20v22 ) —0.4566

(iii) Let u=~+4x+14 so x=
=
0 \4x+14

_1
24

3. Thus substitution clearly will not work as when x ranges from —1 to 1 u remains at the value 2 and we
no longer have a definite integral.

4. In the formula for integrations by parts,
(i) Letu'=cosx andv=x.Then

J.xcosxdx = J.u'vdx = xsinx—J.sinxdx =xsinx+cosx+C

(i) Letu"=x, v=1og3x. Then
2

2 2 2
J.xlog3xdx=X—log3x—J.x—dx+C:x—log3x—x—+C
2 3x 2 6

(i) Let u'=e", v=ux. Then
J.xexdx = Iu'vdx = xe" —J.exdx =xe" —e" +C.
1

(iv) Letu'=(1+x)2,v=x Then

3 5

1 2 3 2 3 2 3 4 5
J.x(1+x)2dx =§(l+x)2 x—gj.(l+x)2dx =§(l+x)2 x—E(1+x)2 +C
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(v) Letv=Ilogxand u'=1. Then
J.logxdx=x10gx—J.ldx=x10gx—x+C

(vi) Letv=x’,u'=¢.Then

J.x3e3"dx zée“)c3 —J.xze3xdx.

For the integral on the right hand side let ' = ™ and v = x*. Then
J.xe3xdx = %e“x2 —%J.xe“dx. (2)

Again for the integral on the right hand side let ' = ¢’*, v = x. Then

J.xexdx=le3xx—lj.e3xdxzle3xx—le3x+C 3)
3 3 3 9

Substituting (3) into (2) the result thus obtained with (1) gives
J.x363dx = leh ()f —x’ +2x—gj +C.
3 39

(vii) Let u'=e™ and v =sinbx. Then

ax

1= J.e”" sinbx = < sinb —éJ. e™ cos bxdx 4)
a a

For the integral on the right hand side let ' = ¢** and v =cosbx. Then

ax

ax e b ax :
Ie cos bxdx = cosbx+—J.e sin bx
a a

= l(e“x cosbx+b1).
a
Substituting back into (4) gives
1 :m—%(e‘“ cosbx+b1).
a a

Solving for I and adding a constant gives

J=—¢" (asinbx—bcosbx)+C

a’+b’
8.5
0 b
1. (i) I exdx:kl)im exdx:kl)imeb —1=00, soourintegral is divergent.
0 =% Jo —>0
H OO—x : b—x _1: —xb_' -b _
(i) J.O e “dx =k1)1_r)2 Oe dx—kl)l_r)ll[—e ]0—}171_1;10’.}[—6 +1]—1

so the integral is convergent.

0 &0 ) o >0 &0

. Pt 17 1
(i) Ix ‘de=tim [ x 2dx=1im{2x2} :m{z—zgz}:z
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so the integral is convergent.

1 1
(iv) J. x7dx=lim | x’dx=-limx"

0 &0 ), >0

1
= lim[l —l} ,
& >0 P

so the integral is divergent.

2 0 2
(v) J. x‘zdxzj. x‘zdx+J. xdx.

-1 -1 0

0 € € 1
Now J. xde=lim| xdx=lim— x‘lJ = lim[— - 1} =00,
-1 >0 J -0 -1 &0 g
so our integral is divergent.
2.3 2

201 ! 2 2
: 1y 1 1
2. i J. J.x2+x dedy=| Z+22 4 :J. —tZldy=—y+—*| =1—
0 1o T 13 2, 4 13 2 4 3y 4y 12

1 2 1 32 1 3 1
i) [ [y aac=] erel]ae=[ e la=20 T 8
041 0 3 . 0 3 3 3 o 3

' "4 x|
dxzj. —x’dx =—
03 3

0

1

1 x 1 3
wn_[f f+qfdmk=f.ﬁy+z—
0J0 3

0

0

y2

1 py? 1 oy? 1
(iv) J. J. (3x+2y)2dxdy=J. J. 9x2+6xy+4y2dxdy=J. 3x° +3x7y+4xy*| dy
0d0 040 0 0
! 3,1 4 4 4 121
=| 3343y +4y'dy ="y +—1y°+=)°| =—.
J.O y y yay 7y 2y 5)’ T

1. (i) The Lagrangian function for this problem is
Z =xx, +/1(Y—p1x1 —pzxz).

The first order conditions are
Z =x, _}“pl =0
Z,=x —/1]92 =0
Z, =Y —px —p,x, =0.
The first two conditions imply that
_PN

? P

S0 substituting into the third equation gives the Marshallian demand functions
XI*ZY/sz x; =Y/2p,.

(ii)  The indirect utility function is the maximum value function of this problem so it is
V(p.Y)=xx=Y"/pp,.

99



1.2

1.2 Y Y
(i) CS= J.l =—1log p,

2pdp, 2
C is defined by
v(p.Y+C)=v(p’.Y)
(Y+C) e
T4(12)p, 4p
= (= Y(Jﬁ —1) —0.09544Y.

§log1.2 =0.09116Y.

1

E is defined by
V(p'.Y)=V(p".Y-E)
2
.y _(Y-E)
4(1.2)p,  4p,

= E=Y(1-1/31.2)=0.08713.

(iv) Asincome Y >0 we have
E<CS<C.

2. (i) ByRoy’sidentity the Marshallian demand functions are given by
ar.
«_ opj
)Cj = E .
oY

Now

and

SO

x; =y, + 5 (y—izn})/ipij J’j(l—ﬁj)Jrﬁj(y—Z?’ipij

i#j

P p;
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(i) The loss in consumers’ welfare using consumers’ surplus is given by

Lip! . L1p) |
CSZJ.U xldplzj.u 71(1_ﬁ1)+/p1_dp1
Dy

P

where / = ,Bl(y—Z}/ipij. Thus
i#l

CS=7,(1-B,) p, +log p)|
=7, (1=4,)(1.1) p/ +log(1.1) p} =y, (1= B,) p; + (1og p;
=(0.1)y,p/ (1- )+ (logl.1.

1.1
1

(i) The loss in consumer welfare measured by compensation variation C is defined by
V(p'.y+C)=V(p".»).

where the new prices p' are the same as the old prices p except p; =1.1p/. So
y+C=Xy.p =0.1y,p/
(1.1)" r1p®

1

V(pl,y+C)=

and Cis given by
y+C-Xyp' -01ypl  y=-Xr.p;

(1.1 r1p% 1p,”

i i

5

that is,

A
y+C=Xyp -0.1y,p =(1.1) (y—Z%p?j,

thatis,
0 A 0
C=0.17,p) +((1.1) —1)(y—27,»p,» j

The loss in consumer welfare measured by equivalence variation is defined by
V(PI,J’) = V(poay_E)

where
N N
Vip,y)= : :
(p y) (1.1)& lepﬂz
and
0 y=E-Xy,p
v(p'.y-E) :W
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Thus E'is given by
y=27.p =0.1y,p/

—E-Syp'= i )

g 270P, (1.1)"

that is,
0.17,p7 +((1.1)" —1)(%27&?) c
E = ! =
(1 l)ﬂl (1 l)ﬂl

Exercises for Chapter 9
9.4

1. All the equations are first order linear differential equations with constant coefficients.

—4x

()  The general solution to the homogeneous equation is y = Ce ™" with C an arbitrary constant.

A particular solution to the nonhomogeneous equation is

—4x

y= e—4xJ.0x e e*ds = e6 (e6s ];) _ eT?‘x(em _1) _ %(er _e—4x)'

The general solution to our equation then is
_ —4x l 2x _ —4x
y(x)—ce +6(e e )
Using the initial condition we get ¢ = 2 and the required particular solution of
26—4x + (er _ e—4x>
y(x)= <

—6¢

(i) The general solution to the homogeneous equation is y = ce

particular solution to the nonhomogeneous equation is
~Tx

y= €_7xJ.0x e’e’ds = 66“ (e6x - 1) = %(e‘x - e‘”).

with ¢ an arbitrary constant. A

The general solution to our equation is then
_ —Tx l -x _ Tx
y(x) =ce "~ + 6 (e e )

Using the initial condition we get ¢ =1 so the required particular solution is

—Tx
y(x) = Se6 +%e‘x
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(iii) The general solution to the homogenous equationis y =ce*, ¢ an arbitrary constant.
particular solution to the nonhomogeneous equation is

y= —exJ. s%eds.

0

Now using integration by parts we have
J.sze‘sdx =—s’e” + 2J. se’ds

and
J.se““ds =—se’ + Ie“‘ds =—g5e ' —¢°

SO
J.sze““ds =—s’¢ " —2¢" (s + 1) +c.

It follows that
J. Sleds = sl —2e" (s + 1)|; =—x'e* =2¢" (x + 1) +2
0
and that a particular solution to the nonhomogeneous equation is
y=x +2(x+1)—2€x.

The general solution to our equation then is
y(x) =x’ +2(x+1)—2ex +ce' =x’ +2(x+1)+c'ex

where ¢’ is an arbitrary constant.

y()=1=1=5+ce= ' =—4e”

so required particular solution is

y(x)=x"+2(x+1)—4e""

2. () Wehave
Y:}/Y+v£+7
dt

SO
dy -
v+ Y(1-y)=1
o tra=7)
or
Y I -
d—+aY:—— where a:y 1.
dt % v
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(i) Potential equilibrium where ¥ =Y and % =0.

That is at

This is a particular solution to the nonhomogeneous equation. The general solution to the homogeneous
equation isY = ce™ with ¢ an arbitrary constant.

Adding we get the general solution to the nonhomogeneous equation given by
Y=Y +ce™.

and
Y -7 ifand only if e — 0. That is, if and only if a > 0.

(i) Want >0 where azy—%.

As y is the marginal property to consume, 0 <y <1 and y —1<0. The accelerator vis v >0, so this

condition will not hold and Y will be subject to explosive growth. This may be a good representation in a
growth model.

3. (i) Consumers when faced with rising prices may buy now to avoid higher prices in the future. If this
rationale is correct we would expect ¢ > 0. Alternatively they may reason that rising prices today
must be matched by prices falling in the future so they will hold off buying now, in which case we
would expect ¢ < 0.

(i) Equating O, to Q, we have

a+bP+c62—P:a+,BP
t

or
P& P2 withg=2"8.
dt c c

which is a first order linear differential equation with constant coefficients. A particular solution to the

nonhomogeneous equation is found by letting P = P and ci—P =0 in the equation to give
t

As Pis at rest at this value P is a potential equilibrium.

The general solution to the homogeneous equation is
P(t)=7¢e" =P(0)e™™, ¢ anarbitrary constant.

Adding gives the general solution to the nonhomogenous equation
P(t)=P+P(0)e.
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(iii) Now
P— P iff d>0,
that is,

iff b_ﬂ>o.
C

We are given b <0 and £ > 0 so the condition we require is ¢ < 0.
(@—a)

b-p)

If this is the case the resultant equilibrium for Pis P =

4. (i) Consider
Y (AK,AL)=(AK) (AL) " = AK L™

so Y (K, L) is homogeneous of degree one.

OY _  raipia Y _ a-lyl-a
é’_K_aK " >0 é,Kz—a(a—l)K ' <0.

- Y ’y
Similarly g—K >0 and % <0.

Now
Y(0,L)=0L""=0

Y(K,0)=K“0=0,

—~

so the function satisfies all the requirements of a neoclassical production function.

L
0 ¢(k)=k"

[72]

(i) The differential equation is
k'=sk* —(n+65)k

or
k'+(n+6)k =sk®

which is clearly a Bernoulli Equation. Dividing through by £* gives
k™K' +(n+6)k"™ =s

and letting z=k'"* so
Z'=(1-a)k™ k'

we write our equation in terms of z as
z' +(n +5)(1—a)z = s(l—a).
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The general solution to this equation is
:kl—oc _ —(1-68)(n+5)t n Ky
z e n+o8’

where ¢, is an arbitrary constant.

(iv) As 0<a<l, (1-a)(n+3&) is positive so

e 70 50 a5 t > o,
Thus
kl—oc S
- n+o
and
1
k* :( Ky )l—a
n+o

is the steady state level of .

(v) The steady state level o consumption is
¢ =¢(k")-(n-0)k

a 1

“(s) -

The golden rule level of £ occurs when
¢ (k)=n+5.

That is when
ak™ ' =n+68

SO

AT
g a n+o)

comparing &~ with k, we see that the golden rule level of s is

Sg =.

9.6
All these equations are second order linear differential equations with constant coefficients.

1. (i) Homogeneous equation with auxiliary equation
m’ —4m+4=0,

which has repeated roots of m, =m, =2, so the general solution is y =ce” +c,xe*, ¢, andc,
arbitrary constants.
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Now
y(0)=¢ =2

and
y' = 2ce™ + 202xe2x + czez’” = 4™ + 202xe2x + czez’”

SO

V' (0)=4+c,=5=¢,=1.

The required particular solution is then
y=2e" +xe™.

(i)  This homogeneous equation has an auxiliary equation given by
m —m—-2=0

which has roots m, =2, m, =1 so the general solution to the differential equation is y = c,e** +c,e”™,
¢, and c, arbitrary constants.

Now
¥(0)=c +e, =1 ) =2ce™ —c,e, V'(0)=2¢,—c,=-5.

Solving the two equations in ¢, and ¢, gives ¢, = —% and c, =% s0 the required particular solution is
y= —%ezx +%e‘x.

(i) Nonhomogeneous equation with auxiliary equation
m —2m—-3=0

which has roots m, =3, m =-1 so the general solution to the homogeneous equation is

y=ce +c,e”, with ¢, and ¢, arbitrary constants. For a particular solution of the nonhomogeneous
equation try
y=a,+tax+ a2x2

SO
y'=a,+2a,x and y"=2a,.

Substituting into our differential equation gives
2a, - 2(a, +2a,x) - 3(a0 +ax+ azxz) =9x".

Equating coefficients gives
2a, -2a,—-3a,=0, —4a,—-3a,=0, —3a, =9

107



SO

1

a,=-3, a,=4 and q, =-3-

Therefore a particular solution to the nonhomogeneous equation is

y:—%+4x—3x2

and the general solution is

y= —% +4x-3x" + e’ +ce .

(iv) The auxiliary equation is
m*—2m—-3=0

which has roots m, =3 and m, =—1 so the general solution to the homogeneous equation is

_ 3x -X :
y=ce +ce ", ¢ and c, arbitrary constants.

For a particular solution to the nonhomogeneous equation we try
y=cxe "

SO
y'=cet —cxe ™, y'=-2ce " +cxe .

Substituting into our differential equation gives
—2ce " +cxe - 2(067" - cxef") —3cxe " =8¢,

that is,
—4ce™ =8¢ = c=-2.

Thus a particular solution to the nonhomogeneous equation is
y=-2xe"

and the general solution is
y=-2xe " +ce +ce’.
(v) This equation has auxiliary equation given by
m —m—-2=0

which has roots m, =2, m,=-1, so the general solution to the homogeneous equation is
y=ce ", ¢ and c, arbitrary constants.

For a particular solution of the nonhomogeneous equation by
2x
Yy =cxe
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with
r_ 2x 2x " 2x 2x
V' =ce™ +2cxe”,y" =4ce” +4cxe™.

Substituting in our equation gives

N

e (4c+4ex ——2cx —2ex) = 4™ = c = 3

so the general solution to our equation is

_4 2x 2x -x
y=gxet +aet toe

Now
y(0)=¢ +¢, =5
V' = %ez’” +§xe2’“’ +2¢e” —c,e”
¥'(0) =%+2c1 —c, =1,
SO
¢ = %,cz :%

and our required particular solution is
(12xe™ +14e™ +31e™)
Y= 9 .

(vi) The auxiliary equation is
2m* —2m+1=0

which has conjugate complex roots
1. i _1_ i

so the general solution to our equation is

¢, COSXx ¢, sinx
=2+ 2 + 2
Y 2 2

with

¥2 (¢ cosx ¢, sinx ¢« c
r_e 1 2 2“1 8inx | Y2 COSX
Y= ( 2 2 j*e ( 22 2 2 j
Hence

y(O)=2clz4:>c1:2

yl(O) _ (c,+¢c,)

7 =2=c, =2

so the required particular solution is
v/2 (2cosx 2sinx)_

y=+€ R
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(vii) The auxiliary equation is
m* +m=0

which has roots m, =0, m, =—1 so the general solution to the homogeneous equationis y =c¢, +c,e™",
where ¢, and ¢, are arbitrary constants. For a particular solution to the nonhomogeneous equation try

y=a,+ax.

But a constant appears in the general solution of the homogeneous equation so instead try
y=ax+ alxz.

Now
y'=a,+2ax, y'=2aq,

so substituting into our differential equation gives

— _1 —
2a1+a0+2a1X—x:>al—§, a, =-1

and the general solution to the nonhomogeneous equation is

—x+x° -
yETo o toe t.

Differentiating we have
V' ==1+2x—-ce ™.

Using the initial conditions we have
y(0)=¢ +c, =1

V' (0)=-1-¢,=0

= ¢, =-1and ¢ =2,

so our required particular solution is

2
y:_—x;x +2—¢",

(viii) The auxiliary equation is
m*+2m+1=0

which has repeated roots m, =m, =—1, so the general solution to the homogeneous equation is
y=ce " +c,xe", ¢ and c, arbitrary constants.

For a particular solution tempted to try y=ce™ but ¢ appears in the general solution of the

homogeneous equation as does xe ™ so instead we try
y=cx’e .
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Now

-2 2 - . 2
V' =2cxe™ —cxe" =ce”(2x—x )

y'=—ce” (2x—x2)+ce‘x (2 —2x) =ce " (2 —4x+ xz).

so substituting into our differential equation gives

ce‘x(2—4x+x2+4x—2x2+x2)=e‘x:>c=%.

The general solution to our equation is then
2 —x
y== 5 +ce +exe .

2. Consider y=y,+y, and
ay"+by'+cy=a(y/+y))+b(y+ ) +c(y, +v,)
= (ay!+by| + ey )+ (ay; + by, + )
=f1(x)+f2(x).

()  The auxiliary equation is
m* —3m=0

which has roots m =0, m,=3 so the soluton to the homogeneous equation is
y=c, +c,e’, where ¢, c, are arbitrary constants.

For fi(x>=6 try Yy =ayx. Then y' =a,, y":O and we have _3610 =6:>a0 -2

For f,(x)=3e" try y =cxe’. Then
y' =ce™ +3cxe™ = ce™ (1+3x)

" =3ce’ (1 + 3x) +3ce’™ =3ce’™ (2 + 3x)

SO
30e3x(2 + 3x) —3ce™ (1 +3x) =3¢ = c=1.

Combining we have that a particular solution to our differential equation is
~2x + xe™

and the general solution is
y==2x+xe" +c +ce.
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(i) From (vi) of question 1 the general soluton to the homogeneous equation is

2 —x
y=ce " +cxe™, ¢ and c, arbitrary constants, and a particular solution is y = %. For

f,(x)=3x we try y=a,+ax as a particular soluton so y'=ga, »"=0 and

2a,+a,—ax=3x=a, =3 and a, =—6.

Combining we have a particular solution to the nonhomogeneous equation as

2 —x
y= —6+3x2+x € tce+exe.

(i) From (v) of question 1 the general solution to the homogeneous equation is
y=ce’" +c,e*,with ¢, and c, as arbitrary constants.

For f(x)=6x, wetry y=a,+ax s0 y'=a, y"=0 and then—a, - 2a, —2a,x=6x =>a =-3,

a, =

[NSJ[O¥)

For f,(x)=4e™" try y=cxe™
SO
y'=ce*(1-x), y"=ce " (x-2)

and we have

ce‘x(x—2—1+x—2x)=e‘x:>c=—%.

Combining we have the particular solution to the nonhomogeneous equation as

and the general solution is
y= % -3x- %xe‘x +ce’ et

9.7
Routh’s theorem states real roots and the real parts of imaginary roots of the nth degree polynomial
equation

n n—1 —
am" +am" +...+a,_m+a,=0

are negative if and only if the first n of the determinants

a, a; ds
a, a, a, a, a, a,
a;, s |G Gy Ay,
a, a, 0 a a, a
0 a a
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are all positive, where it is understood that in these determinants we set a. =0 for all » >n needed to
obtain these determinants.

We know y(x)will be convergent if and only if the real roots or the real parts of complex roots are all

negative. Applying Routh’s theorem to our equation, this will be the case if and only if

0
a, T bare>0:>a>0,ab>0:>a>0andb>0.

2. (i) Inthisequation @, =—-21 so by Routh’s theorem the time path is not convergent.

(ii)  From this equation

a=21>0
a, a;| |21 20
= >0
a, a, 1 36
a a, 0| |21 20 O
34321 20
a, a, 0|=|1 36 0[=20(-1) > 0.
1 36

0 a a 0 21 20

The time path for y is convergent.

(i) - From this equation

a, =8
a, a| _ 8 4 60
a, a, |1 -7 ’

so the time path for y is divergent.

9.8

1. (i) Inthis example
Do S (V)
Wl ) +ve

S0 y, =0 has a positive slope.

113



Similarly y, =0 has a positive slope, so we have two possible phase diagrams:

P N P N

Vs Vs

¥, =0
% b »
34 34
(a) (b)
Also,
oy,
oy, hi<0

so y, and y, move in opposite directions so as y, increases y; must decrease from positive to zero, to
negative which give the directional arrows for y, in the two diagrams.

2y,
ay,

=g,<0

so as y, increases, y, must decrease from positive, to zero to negative, which gives the directional
arrows for y, as shown in the diagrams.

Phase diagram (a) gives convergent time paths for our variables without cycles.

Phase diagram (b) gives the same in sections (1) or (2) but divergent time paths in sections (3) or (4).

(i) In this example

| _ (v
ay, o £ (+Ve)

and
Wl _ & (v
Onl,, &  (+ve)
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so the slope of y; = 0is negative and the slope of ) =0 is positive as shown in the diagram:

Y,
v, =0

Also

oy _
ﬂ)ﬁ _f1<0

so as y, increases y; must decrease from positive to zero to negative which gives the directional arrows
for y, as shown in the diagram.

Similarly

oy,
ﬁ)@

=8,>0

S0 as y, increases, y, must also increase from negative to zero to positive which gives the directional
arrows for y, as shown in the diagram.

Thus the time paths for our variables is divergent without cycles.

(iii)  In this example

op|  _ i (ve)

Vi, A (+ve)
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so the slope of y; =0 is negative, so we have two possible phase diagrams:

»T y =0 ﬁ Ya

P N

(a) 2 (b) »
The directional arrows are obtained by considering

g%:ﬁ>m
so as y, increases y, mustincrease going from negative to zero to positive.

Thus the directional arrows for y, are as given in the diagrams.

By the same reasoning, as y, increases y, must increase going from negative to zero to positive thus
giving the directional arrows for y, as shown in the diagrams.

Phase diagram (a) gives rise to divergent time paths for our variables without cycles.

Phase diagrams (b) gives convergent time paths for our variables, without cycles in sections (3) and (4) but
divergent time paths without cycles in sections (1) and (2).

(iv) In this example

onl _ fi_ (+ve) e

Ol fo (+ve)
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so the slope of y; =0 is negative
and

P N

As
oy
ﬂ)ﬁ _f1>0’

as we increase y,, y; must also increase going from negative to zero to positive which gives the

directional arrows for y, as shown in the diagram.

oy, _
ﬁyz_fz<0

as we increase y,, vy, mustdecrease giving the directional arrow as shown in the diagram.

Thus the time paths of our variables diverge without cycles.
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Exercises for Chapter 10

10.2
1. ()

Y

Clearly we require /' >0 and f'<1.

(il

yr+1

v

Vi

We require /" <0 but /' >-1.
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(i)

f
yt+1 -~
A
A
4
Yi
We require /' >1.
(iv)
-~
yt+1
A A\ 4
A
'Y
|4

Yy

We require f' < -—1.
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(@ f=10+51log y, s0 f’:yi>1 for 0<y, <1.

t

The time path of y is divergent without oscillations.

(b) f=3-8cos y,s0f =8sin y, >0for 0< y <=, sothe time path has no oscillations.
For 0.122n < y, < —.878n, 8 sin y, >1 and the time path is divergent, otherwise convergent.

(c) f=10+8y" so f'=40y' >1 for y, >1 so the time path has no oscillations and is divergent.

10.3
1. All the equations are second order linear difference equations with constant coefficients.

() We have
Ay(x) :y(x+1)—y(x), Azy(x):y(x+2)—2y(x+1)+y(x)

so writing our difference equation in standard format gives
y(x+2)—4yy(x+1)+3y(x)=0

which is a homogeneous equation whose auxiliary equation is
m —4m+3=0,

with roots m, =1 and m, =3. The general solution is

y=c¢ +c,3", ¢ and c, arbitrary constants.

(i)  We have
Vy(x—l) =y(x—1)—y(x—2)
Viy(x)=y(x)-2y(x-1)+y(x-2)

so our difference equation is
y(x)—4y(x—l)+4y(x—2) =x’

with auxiliary equation
m’ —4m+4=0.

This equation has repeated roots
m =m,=2

so the general solution to the homogeneous equation is
y=(c +c,x)2"

For a particular solution try
y=a,tax+ azxz.
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Substituting into our equation gives
a, +ax+a,x’ —4[a0 +a,(x—1)+a, (x—l)z}

+4[a0 +a,(x-2)+a, (x—2)2} =x’.

Equating coefficients gives
a,—4a,+12a, =0

a,—8a,=0
a,=1

=a, =8, a, =20,

S0 a particular solution to the nonhomogeneous equation is
y=20+8x+x"

and the general solution is
y=20+8x+x"+(¢, +c,x)2"

(iii) Writing our equation in standard format gives
y(x+2)—2y(x+l)+2y(x) =0

which has an auxiliary equation
m’ —2m+2=0.

The roots of this equation are conjugate complex numbers
m =1+i and m, =1-i

so the general solution to the homogeneous equation is

X

y=22 (cl cosE)anc2 sinﬁxj.
4 4

For a particular solution of the nonhomogeneous equation try
y=a,tax+ azxz.

Substituting into our differential equation gives
ay+a,(x+2)+a, (x+2)2 —2[% +a,(x+1)+a, (x+1)2}

+2(a0 +a1x+a2x2) =6x+x".

Equating coefficients gives
a,+2a,=0, a =6, a,=1

S0 a particular solution to the nonhomogeneous equation is
y=-2+6x+x"
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and the general solution is

y=—2+6x+x>+22 (c1 cos%xntc2 sin%x).

(iv) The auxiliary equation is
m —4m+4=0
which has repeated roots m, =m, =2 so the general solution to the homogeneous equation is
y=¢2"+c,x2%, ¢, and c, arbitrary constants.
For f,(x)=2"try y=cx®2" which gives
ex?2* —de(x-1)" 2" +4(x-2) 22 =2~

Equating the coefficient of 2* gives

1

2c=1 =—.
c=1=c¢ >

For f,(x)=8x try y=a,+a,x which gives
a, +a1x—4[a0 +a, (x—l)]+4[a0 +a, (x—2)] =8x.

Equating coefficients gives
a,—4a, =, a =8, a,=32.

Combining we have that a particular solution for the nonhomogeneous equation is
y=cx"2""+32+8x

and the general solution is
y=cx"2""+3248x+¢2" +¢,x2".
(v) The auxiliary equation is
m* =3m+2=0

which has roots m, =2, m,=1 so the general soluton to the homogeneous equation
y=¢2"+c,, ¢, and c, arbitrary constants.

For f,(x)=c, try y = a,x which gives

2a,(x+2)—6a,(x+1)+4a,x=5=q, z—%.

For f,(x)=2" try y=cx2" which gives
2

2¢ (x + 2) 2 —6ex2 + 4ex2” = 2%,
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Equating the coefficients of 2* gives

lc=11=c=-L

16°

Combining we have that a particular solution to the nonhomogeneous equation is

y= —%x+x2x‘4

and the general solution is

y=c¢2"+c, —%x+x2x‘4.

Now
y(O)zc1 +c,=0
y(1)=2¢ +¢,-5/2+1/8=5/8

=c,=-3, ¢ =3.

Hence the required solution is

y=3.2x—3—%x+x2x_4.

2. In this model we have the following second order linear difference equation with constant coefficients

y(t)-B2+a)y(t-1)+p(l+a)y(t-2)=v

which has an auxiliary equation
m* = B(2+a)m+ p(1+a)=0.

()  The roots of the auxiliary equation are real and distinct if
(24af B >4(1+a) f= >0 (o pog
(2+a)
4(1+a) S 2(2+a)
(2+0{)2 - (2+0{)2
=2/(2+a),

as a=>0

Now

so our condition on £ implies that

B>2/(2+a).

Let m, +m, be the roots of the auxiliary equation. Then

m +m,=(2+a)f>2

by our implied condition on £ and
mm, = B(1+a)>0,
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so both roots are positive and at least one rootis >1. Hence the time path is divergent and nonoscillatory.

(i) The roots of the auxiliary equation are real and equal if
_4(1+a)
d Q+a)’

in which case the common root is
m=2+a)p/2>1

from our implied condition on /. Again the time path for output is divergent and nonoscillatory.

(i) We get cycles in this model only if the roots of the auxiliary equation are conjugate complex and
the condition that ensures this is

4(1+a)
P<avay.

The absolute value of these roots will be

\/(2+0;) ,32+,3(1+“)_£2+a) o B(l+a)

For convergent cycles we require then

JB(l+a)<1= p(1+a)<1 as B(1+a)>0.

For divergent cycles we require

A(l+a)>1.

Explosive Growth
without Cycles

Explosive
Cycles

Convergent
Cycles
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3. When time is treated as a discrete variable we regard our economic variables as changing only after
the passage of discrete intervals of time. If y(x) is our economic variables then y(x) is defined for x =
0,1,2,...

For continuous time the economic variables are regarded as changing continuously.

In a second order linear differential equation with constant coefficients cycles can only occur in the case
where the roots of the auxiliary equation are conjugate complex numbers. In a second order linear
difference equation with constant coefficients, cycles can occur in all three cases: where the roots of the
auxiliary equation are real and distinct, real and equal, and conjugate complex. For example, in the first

case if m, and m, are the distinct roots and |m,| > |m,| with m, negative then eventually m, dominates

and we have cycles. This means that for difference equations, unlike differential equations we must look at
the conditions on the parameters of our model that ensure

() m, and m, are both positive
(i) m, and m, are both negative

(i) m, negative, m, positive but [m,|> m,.

10.5
(i)  Substituting into the definitional equation we have

Y, :a+bY,+v(Y,_1—Y_2),

t

that is,

Y,—cY,_ +cY,, = (lfb) where ¢ = (l—vb)

The auxiliary equation is
m*—cm+c=0.

The potential equilibrium is found by setting ¥, =Y_ =Y, =Y in our definitional equation to obtain

Foa_

(1-0)

(i) The auxiliary equation has real and distinct roots if ¢* —4c >0,
thatis,
c(c-4)>0.

As c is positive, this requires ¢ > 4.

125



If m, and m, are the roots of the auxiliary equation then
m +m,=c>0

mm, =c’ —c’ +4c =4c>0.
so both roots are positive and the time path for Y is not subject to oscillations.

c+.4lc(c—4
The larger root is % >1 as ¢ >4, so we have explosive growth for Y.

(iii) Real and equal roots of the auxiliary equation if
c(c-4)=0=>c=4.

The common root then is
=£=2>1
m=-=2>1,

so we have explosive growth with no oscillations.

(iv) We have cycles if the roots of the auxiliary equation are conjugate complex numbers. The
condition needed to ensure this case is

c(c-4)<0=>c<4,
and the roots will then be given by

ci«/c(4—c) )

m,m, =——————> 1

2

The absolute value of these roots is
& L de—c’ _
| =y ded e

If \Jc <1=> ¢ <1 then we have convergent cycles. If ¢ >1 divergent cycles.

V) ¢ =%, where v is the accelerator and s =1-5 is the marginal propensity to save. Then we

have the following cases:
(a) v=z4s

Explosive growth for Y with no oscillations
(b) v<ds

Oscillations for Y
v> s explosive oscillations

v <s damped oscillations.
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10.6

1. (i) Substituting Azy(x) :y(x+2)—2y(x+1)+y(x) and Ay(x)=y(x+1)+y(x) into the
equation gives the difference equation in standard format:
y(x+2)-3y(x+1)+2y(x)=6.

The auxiliary equation is

B -38+2=0.
Consider
1 2
=-3,
2 1

so by Schur’s theorem the time path for y will be divergent.

(ii) Substituting V*y(x)=y(x)-2y(x-1)+y(x—-2) and Vy(x)=y(x)-y(x—1) gives the
equation in standard format:
—y(x)+y(x-1)+y(x-2)=-T7.

Consider

so by Schur’s theorem the time path for y is divergent.

(i) The auxiliary equation is

3m* -2m+1=0.
Consider
3]
=8
1 3
301 =2 |30 1 =2
230 1 |-230 1
103 -2 |[-8 00 4
2 10 3 |2 10 3
2 31 |4 0 -8
=1(-1)"]-8 0 4/=|-8 0
2 1 3 |21 3
4 -8
:1_13+2
]
=48,
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so by Schur’s theorem the time path for y is convergent.

3. We must first write our difference equation in its alternative form. Now
Ay(x)=y(x+3)-3y(x+2)+3y(x+1)—y(x)
Azy(x) = y(x+l)—2y(x+1)+y(x)
Ay(x) = y(x+1)—y(x),

so substituting back into our difference equation gives
y(x+3)—3y(x+2)+3y(x+1)—y(x)
+a, [y(x+2)—2y(x+l)+y(x)]
+a, [y(x+1)—y(x)]
+a3y(x) =cC.

Collecting terms gives
y(x+3)+y(x+2)(a, -3)+y(x+1)(3-24, +a,)

+y(x)(a, +a,—a,-1)=c.

The auxiliary equation is then
m’ +(a1 —3)m2 +(3—2a1 +a2)m
+(a, +a,—a,—1)=0.

Schur’s theorem states that the roots of this polynomial will all have absolute values less than 1 if and only
if

A - 1 a,+a,—a,—1
a,+a,—a,—1 1
1 0 La,+a;—a,-1 3-2a +a,
A = a,—3 1 2 0 a, +a;—a,—1
P e, +a,—a, -1 0 f 1 a, -3
3-2a,+a, a1+a3—a2—1§ 0 1
1 0 0 a+a,—a,—1 3-2a +a, a, -3
a, -3 1 0 0 a+a,—a,—1 3-2a +a,
A = 3-2a,+a, a, -3 1 0 0 a+a;—a,—1
P la+a,—a, -1 0 0 1 a,-3 3-2a, +a,
3-2a,+a, a,+a,—a,-1 0 0 1 a, -3
a, -3 3-2a,+a, a+a,—a,-1 0 0 1

are all positive.
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Exercises for Chapter 11

11.3
1. (i) The Hamiltonian is

H=u—u"+u,

which is concave in u. Moreover

OH __
e 1-2u+ A,

62121 _ 2,
Ju
so the value of u that minimizes H is
_ (2+1)
u= 2 .

Now
r_ _OH _
A= A 0,

S0 A = ¢, an arbitrary constant, and

. (q+1)
X =U= —2 .
¢, +(c, +1)t . .
Hence x = s where ¢, is another arbitrary constant. But
x(0)=4=c,
4+(c +1
x(1)=2=¥:>cl - s,

so the optimal time paths are

X'()=4-2¢
u(t)=-2
A'(t) =-5.

(if)  The Hamiltonian is
H=—4u—u’+A(x—2u)

which is concave in u and x. Now

OH _ _4_», _
= —4-2u-24,

6212[ -9
u

5

so the value of u that maximizes H is
u=-2-1.
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The costate equation is
N=-CH __j

ox ’
SO A=ce’,
where ¢, is an arbitrary constant. The state equation is

X'=x-2u=x+4+2ce”’

so we have the first order linear differential equation
X' —x=4+2ce".

A particular solution to this equation is
t t
x= e’J. e’ (4 + 2cle““) = e'J. 4e™ +2ceds=¢' [—46“Y - cle‘z“‘]
0

0

t

0

= e’(—4e" —ce’ +4 +cl) =—d-ce'+(4+¢)e,

so the general solution is
x=ce —4—ce +(4+¢)e' =—4-ce ' +(4+¢ +¢,)e,

where ¢, is an arbitrary constant. Using the end point conditions we have
x(0)=2=—-4—¢ +4+c¢ +c, =2

=c, =2,

and
x(1)=10=—-4—ce "' +(6+¢)e=10=>¢ (e—e ") =14—6e = ¢, =-0.9827.

So our optimal time paths are
x"(t)=-4+0.9827¢" +5.0173¢'

A" (1)=-0.9827¢"
u (1)=-2+0.9827¢"".

(i) The Hamiltonian is
H=x-u’ +/1(u—3x),

which is concave in x and u. As

oH _ _
e 2u+ A
and
OH_
ou
the value of u that maximizes H is
_A
u= ) .
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The costate equation is
r_ _OH _
A= x —-1+34

yielding the differential equation
A'=31=-1

whose general solution is
A= % +ce”,

with ¢, being an arbitrary constant. The state equation can then be written as

x'+3x=%+%ee’.

The general solution to the homogeneous form of this equation is x = c,e™> with ¢, an arbitrary constant.
A particular solution to the nonhomogeneous equation can be obtained as in 1 (ii). Alternatively we can

use the method of undetermined coefficients and use as our trial particular solution
x =k, +ke".

Then x' = 3k,e” and substituting into our equation we get

6k,e’ + 3k, —1, G

6" 2
C
=k, =15 k=15

Using the end point conditions we have

X(O):1302+lé+118 1

From equation (1) we have ¢, = % —10—12. Substituting into equation (2) we have

17_6 ), 8¢ 71
18 12 12 18

:>lc—12(e3 e )—%(71—176_3)
-3

2(71-17¢7) 1403071
3(e—e) 601071 23343

=c¢ =

¢, =0.9444-0.1945 =0.7499.
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Thus our optimal time paths are
x (£)=0.7499¢7 +0.1945¢™ +0.0556

A" (1) =0.3333+2.3343¢"
u (¢1)=0.1667+1.1672¢".

2. (i) The consumer’s problem is

40
max J. log C(7)e™"™'dt
0

subject to
W (t)=0.05W (t)-C(¢)
W(0)=1, W(40)=0.5,

W and C expressed in millions of dollars. The control variable is consumption C (), the state variable is
wealth 7 (z).

(if) - The Hamiltonian is
H =log Ce ™ + 1(0.05W - C).

The necessary conditions are

é’_H_e_O‘OQI_ 3
oC C A=0

as

2

A = —Z—IZ =-0.051

W'=0.05W-C
w(0)=1, W (40)=025.

As the Hameltonian is concave in C and W, (the sum of concave functions) these conditions are also
sufficient.

(i) The value of C that maximizes the Hameltonian is
—-0.02¢
c=¢

A

From the costate equation we have the first order linear differential equation
A"+0.054=0

which has a general solution given by
ﬂ, (t) — cle—OAOSI
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where c, is an arbitrary constant, so

0.03 0.03
c=Lle "=ce,

G

say.
The state equation gives the differential equation
W'—=0.05W = —c,e"*

which has a general solution given by
W = 0330‘05' + 5002 (6003: . eoos:)'

w(0)=1 =¢=1
W (40)=0.5=0.5=¢"+50c, ("> —€*) = c, = 0.03386.

The consumer’s optimal time path for consumption is then
C" (1) =0.03386¢"""

and the accompanying time path for the consumer’s wealth is
W (t) =1.693¢"" —0.693¢""™".

3. (i) Substituting u(z) for x'(¢) in the objective function we have
b
Maximize J. f(u(t),x(t),t)dt

subject to x'(¢)=u(t)
x(a)=x,, x(b)=x,.

(ii)  The Hamiltonian for this problem is

H = f(u(t),x(1),0)+ Au(t),

and the necessary conditions for an optimal solution are

oH _of(wxt)

ou  Ou +A=0 ()
. OH _ ﬂf(u,x,t)

A= ox  Ox 2)

x'=u 3)
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Differentiating both sides of equation (1) with respect to ¢ yields

Q(MJ _

dt ou

Using equations (2) and (3) renders Euler’s equation

11.4
1. (i) The Hamiltonian is

H:2x—u—”72+/1(x—u)

which is concave in x and u and as
OH _ _1_,_ )=
e 1-u 0
O°H _ _4
1 -
Ju

5

the value of u that maximizes H is
u=—(1+2).

The costate equation is

1’:-%:-2—/1

which has a solution given by
A=-2+ce”’

with ¢, an arbitrary constant. As x(10) is free the transversality condition is
A(10)=0=0=-2+ce " = =2¢",

SO
A=-2+2"",

The state equation is

X'=x—u=x—-1+2""

which is a nonhomogeneous linear differential equation of degree 1 whose general solution is
x=ce —e""+1,

with ¢, an arbitrary constant. But

x(0)=5=c,=4+€".
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Hence our optimal time paths are
x (t)=4e' +e"" - +1

A(t)=-2+2¢""
u (1)=1-2¢""

(if)  The Hamiltonian is
H=4x-3u—-2u"+A(x+u)

which is concave in x and u and has derivatives

OH _ _5_ O’H _ _
H=3-duva, Sll=a,

so the value of u that maximizes H is

_(x=3)

u= 4 .

The costate equation is

1’:-%’:—(4”),

which has as its general solution
A=—4+ce.

As x(1) is free
A(1)=0=c, =4e

so we have
A=—4+4e".

The state equation is

x’=x+u=x—%+el"

which has as its solution

x=cze’+%—%e

1-t

As x(0) =2 we have ¢, = % +%e so our optimal solutions are

x () zie’ +%e’+1 —%el" +%
A (t)=-4+4e™
u (1) = —% +e'

(iii) Proceeding as we did for exercise 1.(iii) of Section 11.3 we have

/1:%+cle3’
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where ¢, is an arbitrary constant. Try 2(1)=0. Then

and using the end point condition x(0) =1 as we did in the previous exercise we have

=18 26

These values for the constants in our solutions would yield
RORICEE I

But then
W= (1 56) 36

which clearly is not greater or equal to 3.
Rerunning the problem as we did for exercise 1. (iii) of Section 11.3 with x(0)=1 and x(1) =3, we get

after a little arithmetic that

2(53-17¢7) 1043071
R R O 17354

¢, =0.9444 -0.1446 = 0.7999.

Thus our optimal time paths are
x (£)=0.7998¢™ +0.1446¢™ +0.0556

A" (1) =0.3333+1.7354¢
u (¢)=0.1667+0.8677¢".

(iv) The Hamiltonian is
H=tu+x-u’ +/1(u+x)

which is concave in u and x. Differentiating with respect to u we have
OH _y oy, ZH -

ou o’
so the value of u that maximizes H is
B (t+2)
u= 2 .

The costate equation is

1’:-%:-(1—1)

which has as its solution
A=-l+ce’,
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where ¢, is an arbitrary constant. The state equation is
u+x =(t—1+cle")

!
x:
2+x

b

which has as its general solution

S
xX=ce ——e —+
4 2

where ¢, is another arbitrary constant.

Try A(1)=0= ¢, =e which would yield
1-t

z
4 2

j— ’_
x=c,e

1 we have that

_€

4

From the end point condition x (0)
g =
4 1.6796

l=c, =>c, =1+

rendering
»
x=1.6796¢' € -~
Now
x(1)=1.6796¢ -3 = 3.8156 > 2

so our option yields the optimal time paths which are
X' (1) =1.6796¢' € —L

42
l*(t)=—1+el_'

. t—1+e
u (t)z—( 3 )

(v) The Hamiltonian is
H:10x—20u+/1(x+u):(10+/1)x+u(/1—20)

which being linear in x and u is concave in x and u. Moreover it is an increasing function in u for 4 > 20
but a decreasing function in u for 4 <20. Thus

u =3 1>20
u =0 1<20.
The costate equation is
__OH _
A ——W——(IO'FJ,)
which has as its general solution
A=-10+ce™,
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where ¢, is an arbitrary constant. Butas x(1) is free 2(1)=0 so
¢, =10e=27.1828

and
A =—-10+27.1828¢™".

This is a monotonically decreasing function in t and its maximum value on our time horizon is
A7(0)=-10+27.1828 =17.1828.

Thus A" is always less than 20 and
u =0.

The state equation is
X'=x+u=x

so the general solution for x is
x=c,e

where c, is an arbitrary constant. But x(0) =2 so ¢, =2. The optimal time paths then are
u =0
x (t)=2e
A (t)=—-10+27.1828¢™".

(vi) The Hamiltonian is
H=10x-50u+A(x+u)=(10-A)x+u(4-50)
which is concave in x and u and is a monotonically increasing function in u for A > 50 but a monotonically

decreasing function in u for A <50. So
u =4 1>50

u =2 1<50.

The costate equation is

which has as its solution
A=-10+ce™.

As x(2) isfree 1(2)=0 so
¢, =10e* =73.8904.

It follows that
A" (t) =-10+73.8904¢"",
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a monotonically decreasing function in ¢ starting from the value A°(0) = 63.8904, so A" becomes 50 at

t=1 where
A7(T)=50=-10+73.8904¢ "

rendering r = 0.2082. Thus
u =4 0<r<0.2082

u =2 0.2082<r<2.

The state equation is
X'=x+u .
For the time interval [0, 0.2082]

x=4+ce'

andas x(0)=1, ¢, =-3. So for this interval

x' =4-3¢".

For the interval (0.2082, 2]
x=2+ce.

But
x"(0.2082) = 4 - 3¢ = 0.3056

SO
0.3056 =2 +¢,e"*> = ¢, = —1.3758.

For this interval
x =2-1.3758¢".

2. (i) The consumer’s problem is

T
max imize J. logC (t)e™"dt
subject to W =W -C
w(0)=w,, W(T)=0.

(i) - The Hamiltonian is
H=logC(t)e” + A(rW - C).

The function log C is concave in C, and the linear function AW — AC is concave in Wand C. Hence H is
concave in Wand C.
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(iii) The necessary conditions are
OH _e’ _,_

oCc C
r__OH _ _
A= TG Ar

W'=rW -C

Now @2121 :—e_i’ <0
oC C
and H is concave in W and C so these conditions are also sufficient.

(iv) The value of C that maximizes H is
-0t
_€
C= FiE

From the costate equation
A=ce™

where ¢, is an arbitrary constant of integration and ¢, = 2(0) = 4, say. It follows that
C'(t)="Let.

(V) As A(T)=A,e™" and the transversality condition requires A(7)>0 we must have A, > 0.
Moreover the optimal solution for consumption rules out 4, =0. Hence 4,>0 and A(T)> 0.
The transversality condition then requires that # (7') = 0.

(vi) Optimal consumption will rise over time if » > &. That is if the rate of interest is greater than the
consumer’s personal rate of time preference. It will fall if » < &.

3. (i) The problem facing the community is
100
max imize I log au®dt
0
subject tox' =—u

x(0)=1000, x(100)>0.

(if)  The Hamiltonian is
H =loga+alogu— Au
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which is clearly concave in u. A set of necessary and sufficient conditions for an optimal solution is

JH _a _,_
Ju u A=0
__OH _
A= v 0

X' =-u
x(0)=1000, x(100)>0, 4(100)>0, x(100)2(100)=0.

(iii) The value of u that maximizes His u = <. From the costate equation

N

A(t)=¢,
an arbitrary constant. The transversality condition requires that ¢, >0 and u :CQ prohibits ¢, =0 so
1

A(100) = ¢ > 0. The state equation renders

x' =-&

G

which has as its solution

x=-2 ¢

cl
where ¢, is another arbitrary constant. The end point condition x(0)=1000 yields ¢, =1000 and as

2(100) > 0 the transversality condition requires that
x(100) = 1902 + 1000 = 0

1

__a
S0 ¢ =1 00"
The optimal rate of extraction is then
u =100

with the accompanying time path for the resource given by
x"(t)=1000-100¢.

11.5
()  The elasticity of marginal utility is
n(c)= L)
U'(c)

Now U’(c):% and U"(c)=--L so p(c)=1.
c

The instantaneous elasticity of substitution is

_ 1
O'(C)—U(C)—l.
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(i) We have

E-(E

A=

SO

EN[o%}

y=k*.

The problem facing the economy is

Maximize J. " oo logcdt

K]
subject tok'=k* —c—0.11k
k(0)=ky, k(0)20, 0<c(r)< (k).

(i) The Hamiltonian is
3
H=e""logc+ i(k“ -c-0.1 lkj

and the current value Hameltonian is
3
H, = He"” =logc+ y(k“ —c-0.1 lkj

(iv) The necessary conditions for an optimal solution are

OH . 1
o, — 35 Y < Ve
H=—— +0.05u = y(4k 0.11j+0.05y— y(4k 0.16 (2)
3
k'=k*—-c—-0.11k
k(0)=k,, %i_)rrolO/I(T)ZO, %i_r)rolok(T)ZO, %i_)rrolO/I(T)k(T)zo.
From equation (1)
y:% and u'z—c—lzc'

S0 equation (2) yields
(1) = (%k(r)‘i —0.16)0(1‘).

This equation with the state equation gives the required system of differential equations.
_1
¢(1)=0=2k(1) " =0.16.
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Solving for £ gives the steady state level if £
k™ =482.7976.

The steady state level of ¢ is found by substituting this value for & (¢) in the equation k'(¢)=0, and
solving for ¢. Thatis

¢ = (482.7976)¢ —0.11(482.7976) = 49.8893.

(v) Atthe steady state
u=-L =002, 1=002e""

*%
C

SO
A(T)=0.02¢""" >0 as T - o

k(T)=k =482.7976
k(T)A(T)=9.6774¢""" - 0as T — .

It follows that the transversality condition holds at the steady state.
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