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Relevance Logic

E DW I N D.  M A R E S

1 Non-Sequiturs are Bad

Since 1993, when Andrew Wiles completed his difficult proof of Fermat’s Last Theorem,
mathematicians have wanted a shorter, easier proof. Suppose when someone address-
ing a conference of number theorists suggests the following proof of the theorem:

The sky is blue.

\ There is no integer n greater than or equal to 3 such that 
for any non-zero integers x, y, z, xn = yn + zn.

This proof would not be well received. But it is valid, in fact sound, on the classical logi-
cians’ definition. The premise cannot be true in any possible circumstance in which the
conclusion is false. For the conclusion is necessarily true. And the premise is true. Thus
the argument is sound and known to be sound.1

The classical notion of validity does not agree with our pre-logical intuitions about
where the division between good arguments and non-sequiturs should be. Classical 
logic allows connections between premises and conclusions in valid arguments that 
are extremely loose. There needs to be more of a connection between the content of the
premises and conclusion in an argument that we are prepared to call ‘valid.’

Some classical logicians have defined content semantically, usually using possible
worlds, in such a way as to vindicate arguments like our proof of Fermat’s Last Theorem
(see e.g. Lewis 1988). On these views, there is a real relationship between the content
of the premises and that of the conclusion. I don’t want to argue in detail against such
attempts here. Such notions of content may be fine for some purposes. But, since they
approve of arguments like our proof, they do not coincide with the intuitions that we
usually apply when considering whether a proof is good or bad.

Another line of reply is that our notion of good proof is not completely logical, but
rather it is partly pragmatic.2 There is probably some truth to this claim, but we should
resist the temptation to push this problem completely into pragmatics. Theories of prag-
matics are notoriously vague. They tell us, for example, to reject the above argument
because it violates the Gricean maxim to ‘be relevant.’ What counts as relevant is left



unsaid in Grice’s theory. Surely, if there is a theory of relevance that is more rigorous
than this, it would be better, all things being equal, to appeal to the more rigorous
theory. And relevant logic does provide a very specific view about what counts as a 
relevant deduction.

The plan of this chapter is to use the natural deduction system for the relevance logic
R as a guide to the various elements of relevance logic – its proof theory, its semantics,
and their interpretation. Later we will introduce weaker relevance logics and two appli-
cations of relevance logics: one to the problem of conditionals and the other to the
theory of properties.

2 The Real Use of Premises

The problem with non-sequiturs like the one given above is that the premises of the 
inference appear to have nothing to do with the conclusion. Relevance logic attempts
to repair this problem, in part, by forcing a constraint on proofs that the premises really
be used in the derivation of the conclusion.

We will present this idea in the context of Anderson and Belnap’s natural deduction
system for the logic R. The idea is pretty simple. Each premise, or rather hypothesis, in
a proof is indexed by a number. The various steps in a proof are indexed by the numbers
of the premises which are used to derive the steps. For example, the following is a valid
argument in this system:

1. A Æ B{1} hyp.
2. A{2} hyp.
3. B{1,2} (1)(2) ¥ (Æ E)

where ‘Æ E’ is the rule of modus ponens or implication elimination. The numbers in
parentheses are the indices.

Throughout this chapter, we will be using the natural deduction system for the logic
R. This system allows free repetition of premises and the free reiteration of steps
between subproofs.

3 Implication

In natural deduction systems we do not usually merely display proofs with premises.
We discharge premises to prove theorems of a system. The key rule that we will use here
is the rule of conditional proof, or Æ I (implication introduction), viz.,:3

A{k} hyp.
...
Ba

A Æ Ba-{k} (Æ I)
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where k occurs in a. The proviso that k occur in a is essential. It ensures that, in this
case, A is really used in the derivation of B.

We can think of the problem of logical relevance in terms of inference, as we 
have been doing, but also in terms of implication. Relevance logic was developed in 
part to avoid the so-called paradoxes of material implication. These are formulae 
that are theorems of classical logic, but are counterintuitive when we think of the
arrow as meaning ‘implication’ in any ordinary sense, or pre-logical philosophical
sense, of that term. Among these paradoxes are the following (with names given where
they exist):

1. A Æ (B Æ A) (positive paradox)
2. A Æ (~A Æ B) (negative paradox)
3. (A Æ B) ⁄ (B Æ A)
4. (A Æ B) ⁄ (B Æ C)
5. (AŸ ~A) Æ B (ex falso quodlebet)
6. A Æ (B Æ B)
7. A Æ (B⁄ ~B)

Consider, for example, the positive paradox. It says that any true formula is implied by
any formula at all. Implication is usually thought to indicate a tighter relationship than
one that can exist between any proposition and a true proposition, merely because the
latter is true. Similarly, negative paradox says that any proposition is implied by a false
proposition. Again, we have an indication that the material conditional (which always
makes a negative paradox true) is too loose a connection to capture the intuitive sense
of ‘implication.’

Relevant logics were introduced to avoid the paradoxes of implication. Now, this does
not mean that the semantics of relevant logics will show that all such paradoxes are
false in every circumstance. Rather, relevant logicians have developed semantic and
proof-theoretic techniques that do not force the paradoxes to be true. Thus, there are
at least two notions of relevance at play in relevance logic: (a) The system of proof
forces us actually to use every premise in a deduction; (b) the proof theory and 
semantics do not force us to accept the paradoxes of material implication.

Returning to our natural deduction system, consider the following attempt at a proof
of positive paradox:

1. A{1} hyp.
2. B{2} hyp.
3. A{1} (1) ¥ (reiteration)
4. B Æ A{1} (2) - (3) ¥ (Æ I)
5. A Æ (B Æ A)0/ (1) - (4) ¥ (Æ I)

The illegitimate move here is the use of an implication introduction in the fourth step.
2 does not belong to {1} and so we cannot discharge the second hypothesis here. The
other paradoxes are avoided in similar ways.
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4 From Proof Theory to Semantics

In 1972 Alasdair Urquhart presented a semantic interpretation of relevance numer-
als. He begins with the notion of a ‘piece of information.’ A piece of information is a
concept which encompasses but is more general than that of a possible world or an 
evidential situation (the latter is from Kripke’s semantics for intuitionist logic).

Pieces of information satisfy statements. To take an example from Urquhart (1992),
if we have a piece of information a that consists of the fact that Harry is taller than Fred
and the fact that Jim is taller than Harry, then

a |= Jim is taller than Fred.

The satisfaction relation (|=) holds between pieces of information and basic statements
of a language by virtue of the meanings of those basic statements. Here the meaning
of ‘is taller than’ includes its transitivity.

Among those facts that can be satisfied by pieces of information are what we might
call ‘informational links.’4 Among informational links are laws of nature – such as the
law that all pieces of matter attract all other pieces of matter – and convention con-
nections – such as the fact that all objects that are exactly a metre in length are the
same length as a particular bar in Paris. These informational links provide the truth-
makers for implicational statements.

But the truth-making relation between implicational statements and informational
links is not very straightforward. For example, if it is a law of nature (or, rather, an
instance of a law of nature) at a that A Æ B obtains at piece of information a and there
is a conventional link in a such that B Æ C holds in a, then it would also seem that 
a |= A Æ C. But there is no informational link in a which directly makes true A Æ C. 
Like ‘taller than,’ implication seems to be transitive by virtue of its meaning.

To enforce this and other features of implication on the model, Urquhart devised a
truth condition for implication using what is now called ‘fusion.’ Pieces of information
can be combined or ‘fused’ together. The fusion of two pieces of information a and b is
written ‘a � b’. a � b is itself a piece of information.

When we fuse two pieces of information a and b together, we apply the informational
links from a to the information in b. Thus, for example, suppose that it is a law in a that
all material objects attract all other material objects and among the facts in b are i is a
material object and j is a material object. Thus, in a � b we have the fact that i and j attract
one another.

So now we have a connection between informational links and fusion and a con-
nection between informational links and implication. Putting these together, we can
derive the following truth condition for implication:

a |= A Æ B if and only if "b(b |= A fi a � b |= B).

An implication is true at a piece of information, if whenever that piece of information
is fused with a piece of information which satisfies the antecedent the fusion satisfies
the consequent.
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There is a tidy connection between fusion and the natural deduction system. Here
is an instance of our Æ E rule:

1. A Æ B{1} hyp.
2. A{2} hyp.
3. B{1,2} (1)(2) ¥ (Æ E)

We can think of the subscripts as names of pieces of information. In line one, we have
the statement that A Æ B is true in a piece of information 1. In line two, we have A
holding in piece of information 2. And in line three we have B obtaining in 1 � 2. Thus,
Urquhart’s semantics provides us with a semantic understanding of the indices used
in our natural deduction system.

The connection between informational links and implication gives us a means of
interpreting relevant implication. Implications are made true by informational links or
the results of implicational links under certain closure principles, like transitivity. We
take from Devlin (1991) and Israel and Perry (1990) the idea that it is because of infor-
mational links and their closures that facts carry the information that other facts obtain.5

We follow a popular tradition in philosophy of language and hold that statements express
their truth conditions. We say that A Æ B means that A carries the information that B since
this formula expresses the ‘fact’ that there is an informational connection between A and
B or the result of one or more informational connection and certain closure principles.

5 Adding Conjunction

Let’s move to discuss another connective. The truth condition for conjunction in this
semantics is quite straightforward. That is,

a |= A Ÿ B if and only if a |= A and a |= B.

This is merely the same truth condition for conjunction that one finds in Kripke’s
semantics for modal and intuitionist logic.

As we saw in the previous section, the Urquhart’s semantics gives us a clear rela-
tionship between pieces of information and indices in the natural deduction system. 
If we apply this relationship to derive rules for conjunction, the truth condition given
above yields both introduction and elimination rules for that connective. First the intro-
duction rule:

From Aa and Ba, infer A Ÿ Ba.

And now the elimination rules:

From A Ÿ Ba, infer Aa

and

From A Ÿ Ba, infer Ba.
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Note that in the introduction rule the subscript on the two formulae to be conjoined is
the same. Before we can conjoin two formulae we have to know that they are true at
the same piece of information.

The restriction in this rule that the subscript must remain the same allows us to avoid
admitting a well-known proof for positive paradox (see Lemmon 1965). For if we were
to allow formulae with different subscripts to be conjoined, we would allow the follow-
ing proof:

1. A{1} hyp.
2. B{2} hyp.
3. A Ÿ B{1,2} (1)(2) ¥ (ŸI)
4. A{1,2} (3) ¥ (ŸE)
5. B Æ A{1} (2) - (4) ¥ (Æ I)
6. A Æ (B Æ A)0/ (1) - (5) ¥ (Æ I)

The illegitimate step here is step 3. It conjoins two formulae that do not have the same
index.

6 The Problem of Disjunction

The use of the Urquhart’s semantics for relevant logic depends crucially on the notion
of a theory. We show that the Urquhart’s semantics, given certain additional semantic
postulates, is a semantics for a relevant logic by proving a completeness theorem. In a
completeness proof for the Urquhart’s semantics, we construct a model using theories
as pieces of information. A theory is a set of formulae closed under conjunction and
provable implication. Let us suppose that G is a theory. Then, if A Œ G and B Œ G then
A Ÿ B Œ G. Also, if A Œ G and A Æ B is a theorem of the logic we are using then B Œ G.
To represent fusion in our model, we take a � b to be the set of formulae B such that
there is some formula A such that A Æ B is in a and A is in b. In other words, in con-
structing a � b we take major premises from a and minor premises from b and perform
modus ponens on them. The result is a � b. This construction crucially depends upon the
result of a fusion between two theories itself being a theory. As we shall see, this is a
very important fact for the Urquhart’s semantics.

Disjunction adds a new and difficult dimension to the semantics. The natural truth
condition for disjunction is the following:

a |= A ⁄ B iff a |= A or a |= B.

But theories, in general, do not meet the corresponding inclusion condition for dis-
junction, viz.,

A ⁄ B Œ G iff A Œ G or B Œ G.

Theories that do meet this condition are called prime theories. The Urquhart semantics,
however, does not work if we restrict ourselves to using prime theories. For the fusion
of two prime theories is not always a prime theory.
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Thus, either we are forced to modify the standard truth condition for disjunction 
or abandon the use of fusion in the semantics. Relevant logicians have tried both 
alternatives, each with success. Kit Fine (1974) has extended the Urquhart semantics
to include a treatment of disjunction by altering its truth condition. Richard Routley
and Robert Meyer, on the other hand, have retained the standard truth condi-
tion for disjunction and relinquished the use of fusion in their series of papers 
(1973, 1972a, 1972b); for a very nice presentation of this semantics see Routley et al.
(1982). Here we will look at the Routley–Meyer semantics, also known as the relational
semantics.

7 Routley and Meyer’s Ternary Relation

To distinguish between the elements of Urquhart’s semantics and those of Routley and
Meyer’s relational semantics, let us call the latter situations, although in the literature
they are also called ‘worlds’ and ‘setups.’ The Routley–Meyer semantics replaces fusion
with a three-place accessibility relation on situations, R. The truth condition for impli-
cation is correspondingly changed:

a |= A Æ B iff "x"y((Raxy & x |= A) fi y |= B)

This truth condition might look like a ‘bolt from the blue,’ but it is actually a gen-
eralization of the truth condition for necessity from Kripke’s semantics for modal 
logic. Whereas Kripke uses a binary relation to interpret a monadic connective 
(necessity), Routley and Meyer use a ternary relation to interpret a binary connective
(implication).

We can view the relational semantics as generalizing fusion. Recall that we said 
that a � b results when the informational links from a are applied to the information 
in b. Adapting this idea to the ternary relation is quite easy. We say that Rabc
obtains when the information that results from the application of the links in a to 
the information in b is contained in c. To return to our previous example, suppose that
a contains the law that all matter attracts all other matter and b contains the informa-
tion that i and j are material objects. Then c contains the information that i and j attract
one another.

We can force implication to have the various properties that we want by accepting
certain postulates in our model theory. For example, if we want the statements satis-
fied by situations to be closed under modus ponens, we adopt the following postulate. For
all situations a,

Raaa.

For suppose that a |= A Æ B and a |= A. By the truth condition for implication, for all b
such that Raab, b |= B. But Raaa, by the above postulate. So, a |= B. Thus, a is closed under
modus ponens as we suggested. There are similar postulates that are required to satisfy
transitivity and other properties that one might desire implication to have.
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8 Rules for Disjunction

Now we return to our natural deduction system and add some rules for disjunction.
The introduction rules are quite obvious:

From Aa, to infer A ⁄ Ba.

and

From Ba, to infer A ⁄ Ba.

The elimination rule is a little more complicated:6

From A ⁄ Ba, A Æ Cb, and B Æ Cb,
infer Ca»b.

There is also a rule that ensures the distribution of conjunction over distribution (it
simply states that one can infer from A Ÿ (B ⁄ C)a to (A Ÿ B) ⁄ (A Ÿ C)a).7

9 The Semantics of Negation

The treatment of negation is one of the most controversial elements of relevant 
logic (see Copeland 1979). The key here is that in order to block ex falso quodlebet 
we need situations in our semantics that make contradictions true. In addition, in 
order to reject the paradox A Æ (B⁄ ~B) we need situations at which bivalence 
fails. Thus, we need a semantics for negation that does not force bivalence or con-
sistency on us.

Routley and Meyer’s model theory incorporates a device from a semantics developed
originally for relevant logic by Richard and Val Routley in 1972. This device is an 
operator on situations, which has become known as the Routley star. For each situa-
tion in the semantics, there is a situation that is its ‘star.’ The star of a situation a is a*.
Some situations (in some models) are identical with their stars, but not all. The truth
condition for negation then becomes:

a |=u ~A iff a* |=/ A.

The relative independence of a situation and its star allows inconsistencies and failures
of bivalence.

On the other hand, Routley and Meyer relate worlds to their pairs in order to satisfy
the various postulates governing negation. For example, they set a = a* in order to satisfy
A Æ ~~A and ~~A Æ A.

The problem with the Routley star is that many philosophers have had trouble
understanding what it is and what it is supposed to do with negation. Here we will use
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an explanation due to J. M. Dunn (1993). Dunn does not begin with the Routley star.
Instead, he postulates a binary relation C on situations that is supposed to relate situ-
ations to situations with which they are ‘compatible.’ For example, suppose there is
information in the present situation that a particular table is completely red. In another
situation, there is the information that it is completely green. These two situations 
are incompatible with each other. If there are no such conflicts, then situations are
compatible.

Note that situations need not be compatible with themselves. Situations are abstract
(‘ersatz’) entities and can contain conflicting information (e.g. that the table is red and
that it is green all over).

Now we have the following truth clause for negation:

a |=w ~A iff "b(Cab … b |=/ A)

Now we can use the compatibility relation to define the star operator. a* is the largest
situation that is compatible with a. a* is largest in the sense that it contains more infor-
mation than any other situation compatable with a.8

10 Rules for Negation

The introduction rule for negation is a form of the reductio rule:

From A Æ ~Aa, infer ~Aa. (~I)

The elimination rule is a form of modus tollens:

From ~Ba and A Æ Bb infer ~Aa»b. (~E)

We also add two double negation rules: From ~~Aa to infer Aa and the converse of this
rule.

11 Disjunctive Syllogism

The rule of disjunctive syllogism (DS) is

From A ⁄ Ba and ~Aa, infer Ba.

This is an intuitive rule of inference. We use it to ‘deduce’ the identity of the murderer
when reading mystery novels – we eliminate all but the guilty party. We use it when
determine who sits on university committees (‘X are going on leave. Y will say crazy
things. So, it has to be Z.’). In fact, we use DS all the time. But, if we add DS we get back
one of the paradoxes of implication. The following proof is due to C. I. Lewis (see Lewis
and Langford 1959):
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1. AŸ ~A{1} hyp.
2. A{1} (1) ¥ (ŸE)
3. A ⁄ B{1} (2) ¥ (⁄I)
4. ~A{1} (1) ¥ (ŸE)
5. B{1} (3)(4) ¥ (DS)
6. (AŸ ~A) Æ B0/ (1) - (5) ¥ (- I)

So, adding DS gets us EFQ.
Reactions to this proof are varied. Some, like Stephen Read (1988), claim that the

problem is not with disjunctive syllogism, but rather with our understanding of dis-
junction in natural language. We should interpret natural language disjunctions as an
intensional disjunction. In particular, we should treat it as fission, sybolised ≈. In R and
closely related relevant logics, fission can be defined as

A ≈ B =df ~A Æ B

Clearly, disjunctive syllogism is valid for fission. It is just a form of modus ponens 
(Æ E). What is not valid for fission is addition. We cannot infer from A to A ≈ B. This
blocks the step from lines 2 to 3 in the proof above. Thus the proof is blocked and 
so we can create a form of disjunctive syllogism without buying into a paradox of
implication.

Read’s solution has definite merits. I have found that students, who have not yet
become accustomed to the quirks of classical logic, find ⁄I a rather strange rule. When
I have shown Lewis’s proof during seminars, I have the audience vote to decide which
rule to reject. ⁄I is always the one they choose.

But there are problems with taking natural language disjunction to be intensional.
In particular, the truth condition for intensional disjunction does not look like anything
we would identify with natural language disjunction. That is,

a |= A ≈ B if and only if "b"c(Rbca … (b |= A or c |= B)).

Many relevant logicians have been reluctant to accept Read’s view because they do not
think that this truth condition looks like it explicates the meaning of natural language
disjunction.

There are other ways of dealing with the apparent validity of DS. We’ll take a look
at one due to Chris Mortensen (1986), with some minor changes made to fit the current
chapter.

Mortensen holds that we can use DS with extensional conjunction under certain 
circumstances. According to Mortensen, the problem with DS is that we cannot use 
it when reasoning about inconsistent situations. When we reason about consis-
tent situations, we can use it. For, the following argument is valid (Mortensen 
1986: 196):

1. If a situation a is consistent, a |= A ⁄ B and a |= ~ A, then a |= B. (hypothesis)
2. a is consistent hypothesis
3. a |= A ⁄ B hypothesis
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4. a |= ~A hypothesis
5. a |= B (1)(2)(3)(4) ¥ (modus ponens)

There are at least two interesting features of this argument. First, it is done within the
semantic metalanguage. Second, the nature of the first premise is worth nothing. It
tells us that consistent situations are closed under disjunctive syllogism. Note that this
is a premise – it is not proven by the argument. Nor does Mortensen establish it in any
other way. Mortensen says that it is justified by intuition (Mortensen 1986).

I do not have space here to argue the merits of either of these treatments of DS, 
nor do I have space to discuss other alternative approaches. I direct the interested reader
to the bibliographies in Anderson et al. (1992) and Read (1988) for readings on this
topic.

12 Logics Stronger than R

So far, we have been motivating the logic R. But there are many other relevant logics
that have been studied.

Logics stronger than (that contain more theorems than) but close to R, tend to be
only marginally relevant. For example, the logic R Mingle (RM) of Dunn and Storrs
McCall contains all the axioms and rules of R, plus the mingle axiom:

A Æ (A Æ A)

For a logic to be counted as relevant it must have the variable sharing property. That
is, if a formula A Æ B is a theorem, then formulae A and B must contain at least one
propositional variable in common. RM does not have the variable sharing property, but
does have a property very close to it, viz.,9

If A Æ B is a theorem of RM, then either
A and B share a propositional variable

or ~ A and B are both theorems of RM.

RM contains theorems that seem paradoxical from a relevant point of view. Among
these is ‘(A Æ B) ⁄ (B Æ A)’. Despite the semi-relevance of RM, it has its attractions
and it and systems very similar to it have their advocates (see, e.g. Avron 1990a,
1990b).

Slightly stronger than RM is the elegant logic RM3. RM3 is characterized by three-
valued truth tables. The three values that we will use are T, F, and B. T and F are true
and false respectively, and B is the value ‘both true and false.’ Dialetheists are philoso-
phers that hold that some sentences can be both true and false. Even if we are not
dialetheists, we can make sense of this truth-value by thinking about inconsistent fic-
tional stories. We can understand such stories by taking the inconsistencies in them to
be both true and false of the story. Both T and B are designated values in this seman-
tics. That is, a statement is considered to be (at least) true if it is T (perhaps best thought
of as ‘merely true’) or B.
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This is a simple, elegant logic that comes very close to being relevant.

13 Logics Weaker than R

On the other hand, many relevant logicians have argued for systems weaker than R.
In fact, the preferred logic of the Entailment volumes (Anderson and Belnap (1975) and
Anderson et al. (1992)) is the logic E of relevant entailment. E is meant to capture a
strict relevant implication. Given this, it was conjectured that E would be captured by
R extended by the addition of a necessity operator and some (S4-ish) axioms govern-
ing that operator. Unfortunately, NR or R�, as the resulting logic was called, was shown
to be somewhat stronger than E. As a result, relevant logicians could not accept both
that R is the logic of relevant implication and that E is the logic of necessary relevant
implication. (See Anderson and Belnap (1975) for a more detailed history.)

Other relevant logicians have given various reasons for adopting weaker logics, but
we will only look at one such motivation.

Some logicians have used relevant logics to develop naïve theories of truth and naïve
set theories. A naïve theory of truth both contains its own truth predicate and admits
Tarski’s truth schema, viz.,

True( A ) ´ A.

As we shall soon see, if we base a naïve theory of truth on the logic R, we end up with
a trivial system. That is, the resulting logic can prove every proposition.

A similar state of affairs holds for naïve theory of sets. A naïve set theory contains
an unrestricted comprehension principle, such as, for each formula A,

$x"y(A(y) ´ y Œ x).

Again, adding this principle (along with other standard principles of set theory) to R
yields a trivial theory.

Let’s use contraction to prove ‘Curry’s paradox’ in R with the naïve theory of truth.
My proof follows Meyer et al. (1979), and is done in the axiom system.

��
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T T B F T T T T
B B B F B T B B
F F F F F T B F

Æ T B F ~

T T B F T F
B T T B B B
F T T T F T

The truth tables for RM3 are the following:



We start with a definition of a proposition C:

C =df Tr( C ) Æ p

where p is any arbitrary proposition. We also define a biconditional (A ´ B =df

(A Æ B) Ÿ (B Æ A)).

1. C ´ (Tr( C ) Æ p) definition of C
2. C Æ (Tr( C ) Æ p) (1) ¥ (simplification)
3. Tr( C ) ´ C (T-schema)
4. C Æ (C Æ p) (2)(3) ¥ (replacement of equivalents)
5. �R (C Æ (C Æ p))Æ (C Æ p) (contraction)
6. C Æ p (4)(5) ¥ (modus ponens)
7. (Tr( C ) Æ p) Æ C (1) ¥ (simplification)
8. (C Æ p) Æ C (7)(3) ¥ (replacement of equivalents)
9. C (6)(8) ¥ (modus ponens)

10. p (6)(9) ¥ (modus ponens)

Thus, we can prove any arbitrary proposition in R with the naïve theory of truth. A
very similar proof can be used to show that every proposition is provable in R with a
naïve set theory.

Some relevant logicians hold that one problem with R is that it contains the 
principle of contraction, used in step three in the argument. In schematic form, con-
traction is

(A Æ (A Æ B))Æ (A Æ B).

Here is a proof of contraction in our natural deduction system:

1. A Æ (A Æ B){1} hyp.
2. A{2} hyp.
3. A Æ B{1,2} (1)(2) ¥ (Æ E)
4. B{1,2} (2)(3) ¥ (Æ E)
5. A Æ B{1} (2) - (4) ¥ (Æ I)
6. (A Æ (A Æ B)) Æ (A Æ B)0/ (1) - (5) ¥ (Æ I)

How should we block this proof? Note that hypothesis 2 is used in modus ponens at both
lines 3 and 4. One step towards rejecting contraction in a natural deduction system is
to restrict the use of premises in a proof. That is, we allow each hypothesis to be dis-
charged only once. This blocks the proof. (Of course, in setting up a natural deduction
system that does not prove contraction, we should be sure that there is no other way
to prove that thesis.)

There has been some success in developing naïve theories using weak relevant 
logics. Ross Brady has shown that a weak relevant logic can support a consistent 
naïve class theory and a consistent naïve set theory (see Brady 1983, 1989, and 
forthcoming).

��

��
��
��

��
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14 Relevant Logics and Natural Language Conditionals

In this and the next section, we will look at two applications of relevant logic and its
semantics.

As Dunn (1986) argues, we need a relevant theory of conditionals. For example,
consider the following example:

If you pick up a pregnant guinea pig by the tail,
all her babies will be born without tails.10

Intuitively, this statement is false. Taking the conditional to be a material implication,
however, makes it true.

Probabilistic treatments of the conditional, quite popular at the moment, do not
capture relevance phenomena adequately either. These treatments, for the most part,
accept Adam’s thesis. This thesis says that a conditional A fi B is assertable if and only
if the conditional probability Pr(B/A) is high. But there are cases in which the conse-
quent of a conditional has a high probability independently of the probability of the
antecedent. For example,

If John dropped this piece of chalk, Einstein’s theory of gravity holds.

There is clearly something wrong with this conditional. It makes it seem as if the truth
of Einstein’s theory of gravity was caused by John’s dropping this piece of chalk.
Conditional probability Pr(E/C) is high because the probability of E is high and is inde-
pendent of the probability of C. On the probabilistic theory of conditionals, this makes
the conditional assertable.

These brief, and rather dogmatic, remarks motivate a relevant treatment of the con-
dition. But we cannot merely take the conditional to be a form of relevant implication.
For the implications of the various logics we have seen have properties that the natural
language conditional does not have. For instance, the principle of strengthening the
antecedent is valid for all these conditionals, that is, we can infer from the truth of
(A Æ C) to ((A Ÿ B) Æ C). But we cannot infer from ‘If Ramsey got a new chew toy this
afternoon, he is now happy’ to ‘If Ramsey got a new chew toy this afternoon and he
had a bath, he is now happy’.11

Instead, we can formulate another connective, which shares some properties with
relevant implication. The view that I present here is a simplification of that of Mares
(forthcoming), which in turn is a development of the theory of Dov Gabbay (1972,
1976). Here I develop this idea semantically.

In addition to the elements from the Routley–Meyer semantics, we add a four-place
accessibility relation, I. This relation holds between two propositions and three situa-
tions. Here a proposition will merely be a set of situations. Thus, |A| is the set of situa-
tions at which the formula A is true. The conditional is represented by the symbol fi.

Our truth condition for the conditional mirrors the Routley–Meyer truth condition
for implication.

a |= A fi B iff "x"y((I|A||B|axy & x |= A) … y |= B)
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The difference here, of course, is the insertion of the antecedent and consequent propo-
sitions into the accessibility relation. Why we need the consequent proposition repre-
sented here will be treated later. The inclusion of the antecedent proposition allows us
to block unwanted inferences such as strengthening of the antecedent. For we cannot
infer on this semantics from I|A Ÿ B||C|abc to I|A||C|abc. This blocks the inference from 
a |= A fi C to a |= (A Ÿ B) fi C.

There are some inferences, however, that we do want to hold of the conditional. One
way of understanding implication is as an idealization of the conditional. An analogy
might help here. Recall that we interpreted the implication of R in terms of universal
laws of nature, sufficient causal statements, and so on. Yet our standard laws of science
and causal statements are not universal or sufficient. They have ceteris paribus clauses
built into them. I suggest that the relationship between implication and the conditional
is akin to that between universal laws of nature and sufficient causal statements, on
the one hand, and ceteris paribus laws and normal causal statements on the other. The
latter have built into their interpretation unstated conditions that indicate where they
do and do not apply. Similarly, standard conditionals have unstated restrictions of these
sorts built into their interpretation. Thus, in the semantics of conditionals, the con-
ditional I|A||B|abc only holds when b and c satisfy the restrictions associated with the
proposition |A| and |B| at the situation a.

The inclusion of the consequent proposition is supposed to prevent certain irrele-
vances for appearing. For example, when I talk about what happens if a piece of chalk is
dropped, one of the background assumptions that I make is that the laws of gravity will
hold when I drop the chalk. But as we have said, we don’t want to accept the conditional,
‘If John dropped this piece of chalk, the theory of gravity holds.’12 Rather, on the present
view the consequent cannot count as a background assumption. Thus the consequent
helps to determine which situations are used in the evaluation of the conditional.

We can represent the idea that the conditional is a relevant implication plus some
restrictions by the following principle:

I|A||B|abc
.

\ Rabc

This principle makes valid the thesis below:

(A Æ B) Æ (A fi B)

We can also force the conditional to satisfy modus ponens by adding the principle 
that I|A||B|aaa, for all propositions |A| and |B| and all situations a. Given the previous
principle, it makes sense to have the conditional satisfying modus ponens if the 
corresponding implication also satisfies modus ponens.

15 Theory of Properties

The doctrine of relevant predication is due to Dunn (1987, 1990a, 1990b).
Philosophers distinguish between those properties that an object really has from those
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that it has in a rather tenuous way. Consider the problem of Cambridge change. Two
hours ago, in Toronto (on the other side of the world from me), it was raining. Now it
has stopped. So we have a change from

Ed is such that it is raining in Toronto

to

Ed is such that it is not raining in Toronto.

Here there is a change, but not a real change in me. The change doesn’t really 
affect me.

The standard treatment of lambda abstraction in logic does not distinguish between
those properties that an object really has from those that it has only in this incidental
way. For ‘lx(Raining(toronto))ed’ is usually treated as a legitimate predication.

Dunn (1987, 1990a, 1990b) distinguish between ordinary predication and relevant
predication. A property j is had by an entity i relevantly if a thing’s being i implies that
it has j. In Dunn’s formalism,

(rxjx)i =df "x(x = i Æ jx).

The idea is that the property here is had by the thing by virtue of its being that thing.
Relevant implication is used to formalise the ‘in virtue of ’ here.

As Dunn puts it in (1990b), if i has a j relevantly, then for anything x,

~jx Æ x π i.

So not to have j is to make a thing, or in our own terms, to carry the information that
it is, not i.

To take an example, consider

Ronald Reagan is such that Socrates is wise.

We can ask what this ‘is such that’ is doing here. If it is there to indicate that ‘Socrates
is wise’ is relevantly predicated of Reagan it would seem to be false, for

(rxS)ron ´ "x(x = ron Æ S).

There is no reason to believe that x = ron Æ S for any x here, since just because S is true
does not mean that arbitrary statements imply it. And the sentence ‘x = ron’ seems to
have nothing to do with S. Thus, we can reject ‘(rxS)ron.’

16 Summary

This has been a rather opinionated introduction to relevant logic. I have used the
natural deduction system for R as a guide, since it is rather elegant and because I like
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it. And I have used a particular reading of the semantics in order to give the philo-
sophically inclined reader a way of understanding the system. There are many other
ways of understanding relevant logic, but in a short chapter one cannot cover them all.
So I have decided to treat only one interpretation at some length.
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Notes

1 It won’t help to argue that in a proof, all the steps in the proof must be transparent to the
people to whom the proof is presented, for even after it is pointed out to us that from it is a
theorem that A we can infer that B, therefore A, we still feel quite cheated by the so-called
proof.

2 For a very clear version of this approach, see, Robert Fogelin (1978).
3 Anderson and Belnap (1975) present their rules in ‘horizontal’ form: From A1, . . . , An infer

B. I will use both their method of presentation and the current ‘vertical’ method, depend-
ing on which is easier in a given context.

4 Here I am not presenting Urquhart’s theory. Rather, the present theory, in effect, is that of
Mares (1996). This view is an elaboration of Meyer’s interpretation of Urquhart’s seman-
tics. Meyer (in conversation) takes fusion to be the application of the ‘laws’ of one piece of
information to the facts in another piece of information.

5 Note that for Devlin and Israel and Perry (as for Mares 1996) the list of sorts of informational
links is much longer than the one that I gave earlier. A reasonably good list is at Devlin (1991:
12). I don’t agree with all the types of links that Devlin includes, especially empirical 
generalizations, but the reader can get the general idea of what I am talking about from 
that list.

6 I use what Anderson and Belnap (1975) call ⁄ Es, because it is simpler than the usual rule.
7 Ross Brady has developed a natural deduction system that is supposed to eliminate the need

for this additional rule for distribution. It has not yet been published.
8 In the full Routley–Meyer semantics there is a binary relation £ on situations. If Cab, then

either b < a* or b = a.
9 This is stronger than the closest property had by classical logic. For classical logic, if A Æ B

is a theorem, then either A and B share a variable or ~A is a theorem or B is a theorem. This
property is called ‘Halldén reasonableness.’

10 This example is courtesy of A. R. Anderson, but comes originally from a children's story. If
any reader knows the title and author of this story, I would appreciate the information.

11 Ramsey is a dog.
12 If we add ‘still’ in the consequent of the above conditional, it becomes acceptable; ‘still’ 

and ‘even’ would seem to be ‘relevance breakers’ and a non-relevant analysis of them is
appropriate.
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Further Reading

A longer, more technical but very readable introduction is J. M. Dunn (1986). Dunn and Greg
Restall have rewritten this article for a new addition of the Handbook of Philosophical Logic which
is forthcoming. Greg Restall has also written a textbook on substructural logics (2000), among
which are relevant logics. Mares and Meyer (forthcoming) is a longer introduction than the
current piece and somewhat more detailed (although it does not deal with all the topics treated
here).

For the more advanced reader, Anderson and Belnap (1975) and Anderson et al. (1992), as
well as Routley et al. (1982) contain most of the formal material on these logics. Of course, there
have been technical developments since these books were published.

On the more philosophical side, Read (1988) is an interesting attempt to interpret and defend
relevant logic. His work is idiosyncratic, but this is necessarily the case in relevant logic. Relevant
logic, unlike intuitionist logic for example, was not developed with the aim of articulating a philo-
sophical position. And relevant logic fits with many philosophical perspectives. It is my experi-
ence that there are as many interpretations of relevant logic as there are relevant logicians. For
a very different philosophical outlook, see Routley et al. (1982).
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