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Intuitionism

D I R K VA N DA L E N AND M A R K VA N AT T E N

We will view intuitionism as a philosophical program in mathematics. It was founded
as such by the Dutch mathematician and philosopher L. E. J. Brouwer (1881–1966)
(van Dalen 1999a). The main reference for the technical results discussed here is
(Troelstra and van Dalen 1988); the original texts by Brouwer can be found in (Brouwer
1975); additional translations, and texts of other authors mentioned below, are in (van
Heijenoort 1967), (Mancosu 1998), and (Gödel 1990–95).

1 Logic: The Proof Interpretation

Various arguments for intuitionistic logic have been propounded, for example by Brouwer
(from the nature of mathematics), Heyting (from a concern for ontological neutrality),
Dummett (from considerations on meaning) and Martin-Löf (from type theory). These are
all different arguments but they lead to the same logic. We focus on Brouwer’s motivation.

Brouwer thinks of mathematics first of all as an activity rather than a theory. One
constructs objects in one’s mind. Mathematical truth, therefore, does not consist in cor-
respondence to an independent reality, but in the fact that a construction has been (or
could be) carried out. An intuitionist accounts for the truth of 2 + 2 = 4 by saying that
if one constructs 2, constructs 2 again, and compares the overall result to a construc-
tion of 4, one sees they are the same. This construction not only establishes the truth
of the proposition 2 + 2 = 4, but is all there is to its truth.

In Brouwer’s view, logic depends on mathematics and not vice versa. Logic notes and
studies regularities that one observes in the mathematical construction process. For
example, the logical notion of negation derives from seeing that some mathematical
constructions do not go through. One constructs 2 + 3 and sees that the outcome does
not match with a construction of 4; hence ÿ(2 + 3 = 4).

This suggests that the construction criterion for mathematical truth also yields an
interpretation of the logical connectives. We will now elaborate on this. Let us write ‘a
: A’ for ‘a is a construction that establishes A’ and call this a a proof of A.

A proof of ÿA has to tell us that A cannot have a proof; hence we read p : ÿA as ‘Each
proof a of A can be converted by the construction p into a proof of an absurdity (say,
0 = 1; abbreviated ^)’.



To extend this proof interpretation to the other connectives, it is convenient to have
the following notation. (a, b) denotes the pairing of constructions, and (c)0, (c)1 are the
first and second projections of c.

A proof of a conjunction A Ÿ B is a pair (a, b) of proofs such that a : A and b : B.
Interpreting the connectives in terms of proofs means that, unlike classical logic, the

disjunction has to be effective, one must specify for which of the disjuncts one has a
proof. A proof of a disjunction A ⁄ B is a pair (p, q) such that p carries the information
which disjunct is shown correct by this proof, and q is the proof of that disjunct. We
stipulate that p Œ {0, 1}. So if we have (p, q) : A ⁄ B then either p = 0 and q : A, or p = 1
and q : B.

The most interesting propositional connective is the implication. Classically, A Æ B
is true if A is false or B is true, but this cannot be used now as it involves the classical
disjunction. Moreover, it assumes that the truth values of A and B are known before
one can settle the status of A Æ B.

Heyting showed that this is asking too much. Consider A = ‘there occur twenty 7’s
in the decimal expansion of p,’ and B = ‘there occur nineteen 7’s in the decimal expan-
sion of p.’ ÿA ⁄ B does not hold constructively, but in the proof interpretation, A Æ B
is obviously correct.

It is because, if we could show the correctness of A, then a simple construction would
allow us to show the correctness of B as well. Implication, then, is interpreted in terms
of possible proofs: p : A Æ B if p transforms each possible proof q : A into a proof p(q) : B.

The meaning of the quantifiers is specified along the same lines. Let us assume that
we are dealing with a domain D of mathematical objects. A proof p of "xA(x) is a con-
struction which yields for every object d Œ D a proof p(d) : A(d). A proof p of $xA(x) is a
pair (p0, p1) such that p1 : A(p0). Again, note the demand of effectiviness: the proof of an
existential statement requires an instance plus a proof of this instance.

The interpretation of the connectives in terms of proofs was made explicit by Heyting
(1934). Around the same time, Kolmogorov gave an interpretation in terms of problems
and solutions. The two are essentially the same. Note that in its dependence on the
abstract concept of proof, Heyting’s interpretation goes well beyond finitism (see ‘The
Dialectica interpretation,’ below).

Here are some examples of the proof interpretation.

1. (A ⁄ B) Æ (B ⁄ A) Let p : A ⁄ B, then (p)0 = 0 and (p)1 : A, or (p)0 = 1 and (p)1 : B. By
interchanging A and B we get, looking for q : B ⁄ A, (q)0 = 1 and (q)1 : B, or (q)0 = 0
and (q)1 : A. This comes to ((p)0) = (q)0 and (p)1 : B, or ((p)0) = (q)0 and (q)1 : A,
that is, ( ((p)0), (p)1) : B ⁄ A. And so lp.( ((p)0), (p)1) : A ⁄ B Æ B ⁄ A.

2. A ⁄ ÿA p : A ⁄ ÿA ¤ (p)0 = 0 and (p)1 : A or (p)0 = 1 and (p)1 : ÿA. 
However, for an arbitrary proposition A we do not know whether A or ÿA has a proof,
and hence (p)0 cannot be computed. So, in general there is no proof of A ⁄ ÿA.

3. ÿ$xA(x) Æ "xÿA(x) 
p : ÿ$xA(x) ¤ p(a) : ^ for a proof a : $xA(x) 
We have to find a q such that q : "xÿA(x), i.e. q(d) : A(d) Æ ^ for any d Œ D. So pick
an element d and let r : A(d), then (d,r) : $xA(x) and so p((d, r)) : ^. Therefore we put
q(d)(r) = p((d, r)), so q = lr.ld.p((d, r)) and hence 
lp.lr.ld.p((d, r)) : ÿ $xA(x) Æ "xÿA(x).

sgsg
sgsg
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Brouwer employed a characteristic technique now known as ‘Brouwerian (weak) coun-
terexamples’ to show that certain classical statements are constructively untenable by
reducing them to unproven statements. To illustrate, here is a Brouwerian counterex-
ample to the classical trichotomy law "x Œ �(x < 0 ⁄ x = 0 ⁄ x > 0).

We compute simultaneously the decimal expansion of p and a Cauchy sequence to
be specified. We use N(k) as an abbreviation for ‘the decimals pk-89, . . . , pk of p are all 9.’
Now we define

an starts as an oscillating sequence of negative powers of -2. Should we hit 
upon a sequence of 90 nines in the expansion of p, an becomes constant from 
there on:

1, -1/2, 1/4, -1/8, . . . , (-2)-k, (-2) -k, (-2) -k, . . .

The sequence an satisfies the Cauchy condition and in that sense determines a 
real number a. The sequence is well defined, and, in principle, for each n we can check
N(n).

But of this a we cannot say whether it is positive, negative, or zero:

a > 0 ¤ N(k) holds the first time for an even number
a < 0 ¤ N(k) holds the first time for an odd number
a = 0 ¤ N(k) holds for no k.

Since we as yet have no construction that determines whether N(k)s occur, we cannot
affirm a < 0 ⁄ a = 0 ⁄ a > 0 and hence the trichotomy law cannot be said to have a 
proof.

Moreover, the number a cannot be irrational, for then N(k) would never apply, and
hence a = 0, contradiction. This shows that ÿÿ(a is rational. On the other hand, there
is no proof that a is rational, so ÿÿA Æ A fails. Similarly, a = 0 ⁄ a π 0 has no proof.

This type of counterexample is called weak because they show that some proposition
has no proof yet, but it does not at all exclude that such a proof will be found later. (A
sequence that Brouwer employed in his own writings is 01234567890 in the expan-
sion of p; but its occurence has now been proved.)

Strong counterexamples cannot always be expected. There are, for example,
instances of the Principle of the Excluded Middle (PEM) that have no proof (in any case,
not yet), but the negation of PEM cannot be proved! ÿ(A ⁄ ÿA) is equivalent to ÿA Ÿ
ÿÿA, which is a contradiction. However, strong counterexamples to some other clas-
sical principles do exist, and some will be shown in next section.

Although Brouwer had little interest in developing logic for its own sake, some of the
finer distinctions that are common today were introduced by him. In his 1907 thesis
one can already find the explicit and fully understood notions of language, logic, meta-
language, metalogic, etc. Also, Brouwer was the first to prove a non-trivial result in
intuitionistic logic, ÿA ´ ÿÿÿA (1923). He discussed logic in an informal manner;
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Kolmogorov (1925) and Glivenko (1929) then presented formalizations of parts of
intuitionistic logic. A full system was given by Heyting (1930). As such it has become
a part of mathematical logic in its own right, independent of philosophical motivations.
Also, semantics other than the proof interpretation were developed that allow for
sharper technical results (see ‘Further semantics’, below).

Gödel (1933) defined a translation ° given by 

A° = ÿÿA for atomic A
(A Ÿ B)° = A° Ÿ B°
(A ⁄ B)° = A° ⁄ B°
(A Æ B)° = A° Æ B°
("xA(x))° = "xA° (x)
($xA(x))° = ÿ"xÿA° (x)

and proved that in predicate logic we have

G �c A ¤ G° �i A°

where G° = {B|B Œ G}, and �c and �i denote classical and intuitionistic derivation rela-
tions, respectively.

Classically, a sentence A and its translation translation A° are equivalent, �c A ´ A°;
from an intuitionistic point of view, however, disjunctions and existential statements
will be weakened by the translation. Still, Gödel’s result shows that, formally, classical
predicate logic can be embedded into intuitionistic predicate logic.

Taking A = ^ and noting that ^° = ^, it follows that classical predicate logic is con-
sistent if and only if intuitionistic predicate logic is; so the philosophical advantages of
intuitionistic over classical predicate logic must lie in its interpretation and not in its
trustworthiness.

In fact, Gödel proved something stronger. Classical arithmetic (PA, i.e. Peano’s
axioms with classical logic as the underlying logic) can be embedded into intuitionistic
arithmetic (HA, i.e. Peano’s axioms with Heyting’s formalized intuitionistic logic as the
underlying logic):

PA �c A ¤ HA �i A°

In particular,

PA �c 0 = 1 ¤ HA �i ÿÿ0 = 1
¤ HA �i 0 = 1

So PA is consistent if and only if HA is.
However, it is not always possible to embed classical systems into their intuitionistic

counterparts. In particular, it turns out that intuitionistic analysis (second-order arith-
metic with function variables) contradicts classical analysis. This will be elaborated on
in the next section.
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2 Analysis: Choice Sequences

A choice sequence is a potentially infinite sequence of mathematical objects a = a(0),
a(1), a(2), . . . chosen, one after the other, from a fixed collection of mathematical
objects by the individual mathematician (from 1948 on, Brouwer explicitly speaks of
the creating subject although he must have had the notion already in 1927). Here we
will limit our discussion to choice sequences of natural numbers and rationals. A choice
sequence is an incomplete object, for it is never finished.

Choice sequences come in many varieties, depending on how much freedom one
allows oneself in making the successive choices. The two extreme cases are the lawless
sequences, where there is no restriction whatsoever on future choices, and the lawlike
sequences, where one simply takes the numbers generated by a law or algorithm. One
may (but need not) identify ‘lawlike’ with ‘recursive’. (A lawlike sequence need not be
thought of as an incomplete object, provided one is willing to make the additional
abtraction from the temporal unfolding of the sequence.)

There are various reasons why this variety is relevant. First, a type need not be closed
under a given operation. Consider the sum of two lawless sequences g = a + b, i.e.

g = a(0) + b(0), a(1) + b(1), a(2) + b(2), . . .

This g is itself neither lawless (because it depends on a and b), nor lawlike (because a
and b are lawless). Second, lawlike sequences are needed to instantiate specific exis-
tence claims. Third, lawless sequences are important for metamathematical purposes.

Brouwer probably came to accept choice sequences as objects of intuitionistic math-
ematics in 1914, but theory development began in 1916–17. He showed how, using
choice sequences, one can formulate a theory of the continuum that does not let it dis-
solve into separate points. Thus, Brouwer was the first to show how to incorporate into
mathematics a point already made by Aristotle and others: a set of discrete elements
cannot represent the geometrical or intuitive continuum. Discreteness and continuity
are inseparable, complementary notions, that cannot be reduced to one another.
Neither Cantorian set theory nor earlier constructivist analyses of the continuum (e.g.
Poincaré, Borel, Brouwer in his dissertation of 1907, Weyl in 1918) had been able to
accommodate this insight.

How does this work? Brouwer identifies a ‘point’ with a choice sequence of numbers
that represent, through some coding, rational intervals on the continuum; these inter-
vals should satisfy the Cauchy condition. A point, then, is ‘becoming’ and often to some
extent undetermined. Brouwer then notices that, in general, extensional identity 
of choice sequences is undecidable. This models the non-discrete nature of the 
continuum.

The undecidability of extensional identity follows from the incompleteness of choice
sequences: at any particular time, all there is of a choice sequence is a finite initial
segment with an open end. Even if the initial segments of two sequences are the same,
still nothing can be said about whether they will always have the same values. (In the
case of two lawlike sequences, one may be able to show extensional identity by proving
equivalence of the laws governing them.)
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Choice sequences are generated freely, and at any time we have no more than a finite
initial segment of them, perhaps together with some self-imposed restrictions. But then
a sequence cannot, at any stage, have (or lack) a certain property if that could not 
be demonstrated from the information available at that stage. It follows that bivalence,
and hence PEM, does not hold generally for statements about choice sequences. For
example, consider a lawless sequence a of which we have so far generated the intial
segment 8, 1, 3, and the statement P = ‘The number 2 occurs in a.’ Then we cannot
say that P ⁄ ÿP holds. Note how this argument against the validity of PEM depends on
both the freedom of generation and the potential infinity of the sequences. We see that
acceptance of choice sequences as mathematical objects forces a revision of logic along
the lines of the proof interpretation given above. According to Placek (1999), this is
the strongest argument in favor of intuitionistic logic currently available. (The philo-
sophical thesis that logic may vary according to the ontological region one is speaking
about, has been elaborated by Tragesser (1977), taking his cue from Husserl; in cate-
gory theory, the phenomenon is familiar from topoi.)

Just as in classical mathematics elements are collected into a set, choice sequences
are held together in a spread (‘Menge,’ in Brouwer’s original, somewhat confusing ter-
minology). A spread law, which should be decidable, either admits an initial segment or
inhibits it; a further condition on the spread law is that of each admitted segment, at
least one immediate extension should be admitted as well. The admitted segments form
a growing tree, hence they are also known as nodes. Because of the second conditon,
there will be no finite maximal paths in the tree. Choice sequences correspond to the
infinite paths, and are called the elements of the spread.

A special case is the universal spread, which admits all choice sequences. The spread
of all choice sequences satisfying the Cauchy condition is one way to represent the 
continuum.

For a few particular classes of choice sequences, there are translation theorems. For
simplicity, we look at the case of lawless sequences, but the arguments that follow are
general. Troelstra, developing earlier work by Kreisel, presented a formal system LS
describing lawless sequences, together with a mapping t into a subsystem without 
variables for lawless sequences IDB1, such that

1. t(A) ∫ A for A a formula of IDB1

2. LS � A ´ t(A)
3. (LS � A) ¤ (IDB1 � t(A))

Such translation theorems show the coherency of the translated notion as a mathe-
matical notion, and are important for metamathematical purposes. However, it 
cannot be concluded right away that translations explain lawless sequences away.
These translations take the form of equivalences. An interest in ontological reduc-
tion would demand that we regard them as contextual definitions of quantification 
over lawless sequences. However, such a demand would have to be supported by argu-
ments against such sequences that are independent of the axiomatization, for as the
translation is symmetric, it could just as well be taken to mean that in some cases, quan-
tification over lawlike sequences is best explained as quantification over lawless
sequences.
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More generally, such translations depend on specific axiomatizations of choice
sequences. (In fact, lawless sequences have been axiomatized in different ways (Kreisel,
Myhill, Troelstra), that are not always equivalent.) But an axiomatization is a way to
present mathematical content; it is not identical with it. Hence the need for indepen-
dent arguments. Brouwer certainly thought of choice sequences of any type as genuine
objects of mathematics, constructed by the creating subject. (A phenomenological jus-
tification of this conviction can be found in van Atten 1999.)

The incompleteness of choice sequences guarantees properties that are desirable to
model the continuum, but may at the same time seem to make them unworkable in
practice. For if mathematics is to be based on constructions, what place is there for
objects that at no stage have been completely constructed? Fortunately, there is a con-
tinuity principle. Essentially, this says that all one has to know to make a predication of
some choice sequence is an initial segment. Unlike the sequence itself, its initial 
segments are given in a finite construction.

(WC-N) "a$x A(a, x) fi "a$m$x"b[ m = m Æ A(b, x)]

where a and b range over choice sequences of natural numbers, m and x over natural
numbers, and m stands for ·a(0), a(1), . . . , a(m - 1)Ò, the initial segment of a of
length m. ‘WC-N’ stands for ‘Weak Continuity for Numbers’: weak, as it only says some-
thing about each a individually (local continuity).

From WC-N, two theorems follow that show that intuitionistic analysis is not just an
amputation of classical mathematics, but contains new results that are classically not
acceptable. (It is true that there is no contradiction between the classical and intu-
itionistic systems of analysis as such, as key terms (‘point,’ ‘function’) are defined dif-
ferently; but contradiction arises when one realizes that both systems try to capture the
same, pre-formal notions of ‘continuum’ and so on.)

Veldman (1982) has shown that from WC-N one can derive

THE CONTINUITY THEOREM A real function whose domain of definition is the closed
segment [0, 1] is continuous on [0, 1]:

"e"x1"d"x2(|x1 - x2| < d Æ |f(x1) Æ f(x2)| < e)
for positive d, e and x1, x2 Œ [0,1].

THE UNSPLITTABILITY OF THE CONTINUUM The continuum cannot be split into two non-
trivial subsets: if � = A » B and A « B = Ø, then A = � or B = �.

Weyl announced the continuity theorem in 1921, but this is not really the same strong
result as Brouwer’s. Weyl defined real functions in such a way that they are continu-
ous by definition, that is via mappings of the intervals of the choice sequence deter-
mining the argument to intervals of the image sequence. This way, the function type is
reduced from � Æ � to � Æ � (initial segments to initial segments). Brouwer, on the
other hand, established the continuity of functions from choice sequences to choice
sequences, by showing how this followed from intuitionistic principles and the func-
tional character (the "$!-combination).

a

ab
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Brouwer did not explicitly state the continuity theorem, instead he proved the
stronger

UNIFORM CONTINUITY THEOREM A real function whose domain of definition is the closed
segment [0, 1] is uniformly continuous on [0, 1]

"e$d"x1"x2(|x1 - x2| < d Æ |f(x1) Æ f(x2)| < e)

for positive d, e and x1, x2 Œ [0, 1].

Brouwer used the bar theorem (see below) to prove the uniform continuity theorem and
seems to have believed that the continuity theorem can only be obtained as a corollary
from it. Likewise, Brouwer in his proof of the unsplittability of the continuum appealed
to the fan theorem (see below), where the simpler WC-N suffices, for unsplittability is a
direct consequence of the continuity theorem: suppose � = A » B and A « B = Ø, then
f defined by

is total and therefore, by the continuity theorem, continuous. But then f must be con-
stant, so either � = A or � = B. An instance of unsplittability is that it is not true that
every real number is either rational or irrational. For if it were, we could obtain a non-
trivial splitting of the continuum by assigning 0 to rational, and 1 to irrational real
numbers.

Also note that WC-N by itself already suffices to refute PEM: consider "a["x(ax =
0) ⁄ ÿ "x(ax = 0), ‘Every choice sequence is either the constant zero sequence, or not.’
This is equivalent to "a$z[(z = 0 Æ "x(ax = 0)) Ÿ (z π 0 Æ ÿ"x(ax = 0))]. Applying
WC-N to this gives:

"a$z$m"b( m = m Æ [(z = 0 Æ "x(bx = 0)) Ÿ (z π 0 Æ ÿ"x(bx = 0))])

Now take a = lu · 0 and determine the z and m that WC-N correlates to this a. Then
the above says that each b with an initial segment of m zeros will consist of zeros
throughout, which is of course not the case.

Also refuted by WC-N is Church’s Thesis in the form

CT "a$x"y$z[T(x, y, z) Ÿ U(z) = a(y)]

that says, for every sequence a there exists a Turing machine with index x that calcu-
lates, for a natural number y, the y + 1th member of the sequence (z represents the
computation process, and U(z) its result). CT fails if a ranges over the whole universe
and WC-N is true. For in that case, the index x would always have to be determined
from just an initial segment of a, which is impossible.

An application of WC-N to a predicate A(a, x) determines a set of initial segments
(nodes) that suffice to calculate an x such that A(a, x) holds. Such a set is called a bar.

ab

   
f x

x A

x B
( ) =

Œ
Œ

Ï
Ì
Ó

0

0

if

if

DIRK VAN DALEN AND MARK VAN ATTEN

520



To see if one can arrive at stronger results in analysis, one would have to know whether
bars have structural properties. Brouwer managed to find such a property. For con-
venience, we consider a thin bar B, that is one with the property that if Œ B and 
< (in the ordering of the tree), then œ B (i.e. a thin bar contains no initial segments
that are longer than strictly necessary). Brouwer’s bar theorem shows that the collec-
tion of thin bars, call it ID, is inductively defined (they are well-ordered). The clauses
are:

1. Every singleton tree is in ID;
2. If T1, T2, T3, . . . are in ID, then so is the tree obtained by adding a top to the direct

sum of T1, T2, T3, . . .

This is a powerful insight, for it allows one to use induction in reasoning about thin
bars. One sees from the order of the quantifiers why uniform continuity is stronger than
ordinary continuity: for a given e, uniform continuity demands that the same d work
for the whole interval, whereas for ordinary continuity, d may vary with each x1. This
observation makes it plausible that uniform continuity should require knowledge of the
structure of the bar whereas ordinary continuity does not.

Brouwer’s proof of the bar theorem strongly depends on the intuitionistic notion
that truth of a proposition consists in having a construction for it, and on reflection on
the available means to construct proofs concerning bars.

A bar may well be an infinite tree (not in depth, but in width). A fan is a finitely
branching tree. A corollary of the bar theorem is the fan theorem: if B is a thin bar for
a fan, then there is an upper bound to the length of the nodes in B. Briefly put, a thin
bar for a fan is finite. (The contrapositive of the fan theorem is better known, but was
proven later (1927): König’s infinity lemma, which says that a fan with infinitely many
nodes contains an infinite path. It is not constructively valid, for there is no effective
method to pick out a path that is infinite.)

The unit continuum [0, 1] can be represented by a fan, for example by demanding
that for every n, the nth interval is of the form

where 2 £ a + 2 £ 2n+1, as then the number of alternatives at choice n is finite. Thus it
is that Brouwer could prove theorems about the continuum (such as the uniform con-
tinuity theorem) from a theorem on the constructively more tractable finitary trees.
This shows the power of the fan theorem.

The weak counterexamples, of which we saw an example in the section on logic,
require no more than lawlike sequences and intuitionistic logic. By exploiting the pres-
ence of sequences that are not lawlike but involve genuine choice, Brouwer in 1949
found a systematic and explicit way to construct strong counterexamples, which show
that, if one accepts non-lawlike sequences, certain classical principles are not only
without proof so far but could never be proven at all, as they are contradictory. These
strong counterexamples are based on the theory of the creating subject; we adopt
Kreisel’s terminology here.
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Let �nA stand for ‘the creating subject experiences A (has full evidence for A) at time
n’. The following principles (Kripke, Kreisel) are evident:

1. "n"m (�nA Æ �n+mA)
that is evidence never gets lost;

2. "n(�nA ⁄ ÿ�nA)
that is at every moment the creating subject can decide whether it has full evidence
for A or not;

3. A ´ $n�nA
A holds exactly if the creating subject has full evidence for it at some moment.
(Kreisel dubbed this the ‘Principle of Christian Charity,’ or, alternatively, the ‘Prin-
ciple of Infinite Vanity’: if something is true, the creating subject will sooner or
later experience this.)

These principles more or less define the intuitionistic conception of truth.
On the basis of 1–3, one can associate with each proposition A a choice sequence a

that ‘witnesses’ A:

The statement that such an a exists is known as ‘Kripke’s Schema’:

(KS) $a(A ´ $x · a(x) = 1)

Brouwer used the principles 1–3, and implicitly Kripke’s Schema, to establish strong
counterexamples.

For example, in 1949 he showed

ÿ"x Œ �(ÿÿx > 0 Æ x > 0)

and, by an argument of the same type,

ÿ"x Œ �(x π 0 Æ x # 0)

(# denotes apartness of two real numbers: a # b ∫ $n(|a - b| > 2-n). In the proof inter-
pretation, this is stronger than ÿ(a = b).)

In the proofs of these counterexamples choice sequences are employed that depend
on the creating subject’s having experienced either the truth or the absurdity of a par-
ticular mathematical assertion; these sequences are not lawlike. These methods are
very powerful, for example one can prove that already the irrationals are unsplittable
(van Dalen 1999b).

Besides analysis and counterexamples, other uses of choice sequences have been
found. They are used in certain completeness proofs for intuitionistic predicate logic,
and, together with KS, allow the definition of the (intuitionistic) powerset of � as a
spread.
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3 Further Semantics

As remarked, it is not easy to get model-theoretic results out of the proof interpreta-
tion, as the notion of ‘construction’ as employed there is still informal and not very 
specific. Therefore, various alternative semantics for intuitionistic logic have been devel-
oped (topological models, realizability, Kripke models, Beth trees, Martin-Löf ’s type
theory, the Dialectica interpretation, sheaf semantics, topos models). The investment
into various codifications of formal proof-notions should be rewarded by perspicuous
effectiveness: the first prize being the ‘existence property’ or ‘effective definability prop-
erty’: if $xP(x) is proved constructively, the interpretation should supply us with an
effective procedure to compute (or define) an object a and a proof of P(a).

We will present four: realizability, Kripke semantics, the Dialectica interpretation,
and Martin-Löf ’s type theory.

Realizability

Starting considerations from the finitary standpoint of Hilbert-Bernays, Kleene sug-
gested that provability in HA of a statement of the form "x$yf(x, y) should be taken
to mean that there exists a recursive (choice) function f such that "xf(x, f(x)). Thus,
the original statement is only an ‘incomplete communication’ (a notion introduced by
Weyl), a full statement gives the choice function as well. Similarly, $xf(x) is an incom-
plete communication of a full statement that specifies an object a such that f(a). The
idea behind Kleene’s recursive realizability (or 1945-realizability) is to code all the infor-
mation necessary to prove a particular statement f into a natural number n. The nota-
tion is n r f, ‘n realizes f’.

The defining clauses of r mirror those of the proof interpretation. We use some nota-
tion from recursion theory: {x}y for application, and Ø for convergence.

x r f := for atomic f
x r (f Ÿ y) := (x)0 r f Ÿ (x)1 r y
x r (f ⁄ y) := ((x)0 = 0 Æ (x)1 r f) Ÿ ((x) π 0 Æ (x)1 r y)
x r (f Æ y) := "y(y r f Æ {x}y Ø Ÿ {x}y r y
x r $yf(y) := (x)1 r f((x)0)
x r "yf(u) := "y({x}y Ø Ÿ {x}y r f(y))

According to the first clause, any number realizes an atomic sentence; no number,
however, realizes a false atomic sentence. The second clause is obvious. The third clause
shows the effective nature of the disjunction: as we can effectively test whether (x)0 =
0 or (x)0 π 0, the ‘realizer’ of a disjunction gives us all the information needed to indi-
cate the desired disjunct. Similarly, the fifth clause says that a realizer of $yf(y) codes
the required instance and the information that realizes it. The fourth and sixth clauses
are like the proof interpretation: the realizer of an implication transforms any realizer
of f into a realizer of y; the realizer of a universal statement is a partial recursive func-
tion that yields a realizer for any instance.

Note that n r f is itself a formula of HA, so realizability can be viewed as an inter-
pretation of HA in itself. Therefore, it makes sense to ask for the truth of an instance of
n r f, or whether it is derivable in HA.
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Since the introduction of realizability by Kleene, many variations on the original
notion have been developed. In particular we mention ‘truth realizability’ rt, which is
defined like r but with an extra condition in the clause for implication:

x rt (f Æ y) := "y(y rt f Æ {x}y Ø Ÿ {x}(y) rt y) Ÿ (f Æ y)

Truth realizability is particularly useful in showing how realizability renders the rela-
tion between existential statements and instantiations explicit. One can prove that

HA* � t rt y Æ and
HA* � y fi HA* � t rt y for a suitable term t,

where HA* is a suitable extension of HA in which partial terms are allowed, and which
allow for a formalization of the basis of recursion theory. This fact is used to obtain an
effective version of the existence property

HA* � $xP(x) fi HA* � P( ) for suitable 

Moreover, HA is closed under Church’s rule:

HA � "x$yP(x, y) fi HA � P(x, {e}y) for a suitable e.

Since the index of the recursive (choice) function can be effectively determined, realiz-
ability provides the (admittedly not very practical) machinery needed to extract pro-
grams from proofs.

Kripke’s semantics

In Kripke’s semantics, the activity of the creating subject is modeled; it strongly resem-
bles the theory of the creating subject mentioned above. At each point in time, the
subject has constructed a collection of objects and has experienced a number of truths.
The subject is free to take its activity of construction to a next stage; at each moment
there is a number of possible next stages (or possible worlds). Thus, the stages for the
individual form a partially ordered set (even a tree) ·K, £Ò; k £ � is taken to mean ‘k is
before, or coincides with, �.’ We write ‘k |= A’ for ‘A holds at stage k;’ the standard ter-
minology is ‘k forces A.’ With every k Œ K we associate its local domain of objects created
so far, denoted by D(k). A reasonable assumption is that objects, once created, are not
destroyed later: k £ � fi D(k) Õ D(�).

The interpretation of the logical connectives now consists in spelling out the clauses
of the proof interpretation in this possible-world model of the subject’s activity. Then
the inductive definition of the forcing relation is obvious:

For atomic A, k |= A is given; ^ is never forced.

k |� A Ÿ B ¤ k |� A and K |� B
k |� A ⁄ B ¤ k |� A or k |� B
k |� A Æ B ¤ "� ≥ k(� |� A fi � |� B)

nn
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k |� A ¤ k |� A Æ ^
¤ "� ≥ k(� |� A fi � |� ^)
¤ "� ≥ k(� |�/ A)

k |� $xA(x) ¤ $a Œ D(k)k |� A(a)
k |� "xA(x) ¤ "� ≥ k"a Œ D(�) |� A(a)

Note that the cases of Ÿ, ⁄ and $ are determined on the spot, whereas Æ, ÿ and "
essentially refer to the future.

A Kripke model K is concrete partially ordered set with an assignment of domains
and relations. A is true in a Kripke model K if for all k Œ K, k |� A. A is true, simpliciter,
if A is true in all Kripke models. Semantical consequence is defined as follows: G |� A iff
for all Kripke models K and all k Œ K k |� C for all C Œ G Æ k |� A.

There is an extensive model theory for Kripke semantics. It is strongly complete for
intuitionistic logic, that is G �i A ¤ G |� A, and in particular �i A ¤ A is true. Predicate
logic is complete for Kripke models over trees, and for propositional logic we even have
the finite model property: �/ A fi A is false in a Kripke model over a finite tree.

From the completeness over tree models, one proves the disjunction property:

(DP) �i A ⁄ B fi �i A or �i B

A straightforward proof of DP is as follows. Suppose �/i A and �/i B, then there is a tree
model K1 that does not force A, and a tree model K2 that does not force B. Now K1 and
K2 are glued together: put the two models side by side and place a new node k below
both. In k no proposition is forced. The result is a correct Kripke model, and since �i A
⁄ B (given), k |� A ⁄ B, and hence k |� A or k |� B. But that contradicts the fact that A
and B are not forced in K1 and K2; therefore, �i A or �i B.

Similarly, there is the existence property

(EP) �i $xA(x) fi �i A(t) for a closed term t

The theorems support the intuitionistic intended meaning of ‘existence,’ but the
straightforward proofs use reductio ad absurdum and are therefore not constructive. Here
proof theoretical devices have come to the rescue (the normal form theorem):

1. If ⁄ does not occur positively in any formula in G �i A ⁄ B, then G �i A or G �i B
2. If $ and ⁄ do not occur positively in any formulas in G and G �i $xA(x), then G �i

A(t) for some closed term t.

The Dialectica interpretation

Gödel’s Dialectica interpretation (1958) is an interpretation of HA where, as the primi-
tive notion, ‘construction’ of the proof interpretation is traded in for ‘computable func-
tion of finite type over the natural numbers,’ axiomatized in his system T. The latter
notion is both more specific and less abstract (i.e. closer to Hilbert’s ‘concrete’ finitary
methods). The main result can be stated

If HA � A, then T � $x"yAD(x, y) (AD is quantifier-free; see below)
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This explains Gödel’s philosophical motivation to devise the interpretation; for com-
bined with a willingness to grant that the principles of T are evident, the main result
yields a consistency proof of HA (and, in combination with Gödel’s embedding of PA
into HA mentioned above, a consistency proof of PA). In other words, Gödel aimed to
show that if one wants to go beyond Hilbert’s finitary arithmetic (and to prove its con-
sistency, one has to), the required non-finitary elements need not be as abstract as the
intuitionistic notion of proof.

The interpretation AD of a formula A is defined by induction on the number of logical
operators in A (s . . . z and V . . . Z stand for finite (possibly empty) sequences of, respec-
tively, arbitrary type or higher type; in particular, x and u denote the sequences of free
variables in A and B):

AD := A for atomic A

For the induction step, suppose AD = $y"zAD(y, z, x) and BD = $v"wBD(v, w, u); then

(A Ÿ B)D = $yv"zw(AD(y, z, x) Ÿ BD(v, w, u))
(A ⁄ B)D = $yvt"zw(t = 0 Ÿ AD(y, z, x) ⁄ t = 1 ŸBD(v, w, u))
(A Æ B)D = $V Z"yw(AD(y, Z(yw), x) Æ BD(V(y), w, u))
($sA)D = $sy"zAD(y, z, x)
("sA)D = $Y"szAD(Y(s), z, x)
(negation is defined by ÿA := A Æ 0 = 1)

The interpretation reduces the logical complexity of sentences at the cost of increasing
the type of the objects. The interplay between, on the one hand, the connectives and,
on the other, the quantifiers as constructively construed, introduces the higher-order
functions and thereby removes quantifiers from the connected statements. As state-
ments without quantifiers are decidable, the connectives between them become simple
computable (truth) functions.

For example, $xA(x) Æ $uB(u) (for atomic A and B) is translated as $U"x(A(x) Æ
B(U(x))). This renders exactly the constructive reading of the original formula: ‘Given
an object with property A, one can construct an object with property B’, that is, there
is a construction that takes an object with property A as input and yields an object with
property B as output. Such constructions are the values for U in the translated formula.

It cannot be excluded that an intuitionistic proof of a statement invokes proofs of
more complex statements; this exhibits a form of impredicativity in the proof interpre-
tation. The Dialectica interpretation does not fare better here, as functionals of a higher
type could be used to define functionals of a lower type. Also, unless one is willing to
take the notion of ‘computable functional’ as primitive, logic will be needed again in
the precise defintion of the intended class of functionals. For these reasons, it is not easy
to assess the exact epistemological advantage of the Dialectica interpretation.

Martin-Löf ’s type theory

Per Martin-Löf was the first logician to see the full importance of the connection
between intuitionistic logic and type theory. Indeed, in his approach the two are so
closely interwoven, that they actually merge into one master system. His type systems
are no mere technical innovations, but they intend to capture the foundational mean-
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ing of intuitionistic logic and the corresponding mathematical universe (Martin-Löf
1975, 1984).

Martin-Löf points out that we not only consider propositions (statements) but also
make judgments about them. That is, we may hold propositions true. The basic judg-
ments we have to consider are:

1. A is a type
2. A and B are equal types
3. a is an element of the type A
4. a and b are equal terms of the type A.

We have the following correspondence between propositions and proofs on the one
hand, and types and elements on the other hand:

A is a type a is an element of the type A A is inhabited
A is a proposition a is a proof of the proposition A A is true

The type formation corresponds exactly to the formation of propositions, as used in
logic. It is a basic idea of Martin-Löf ’s type theory, that elements and types have canoni-
cal forms. This explains, for example, equality judgments. Why is 2 + 3 = 4 + 1 : � ?
That is to say, why are the terms 2 + 3 and 4 + 1 equal in the type � ? The answer is
that 2 + 3 and 4 + 1 have the same canonical form 5 (i.e. (1 + (1 + (1 + (1 + 1))))). The
rules for equality have to be understood in this way, for example

A particular feature of Martin-Löf ’s type theory that is the system does not take any-
thing for granted, but always makes explicit all required assumptions. Thus, when
making up a type from parts, all those parts have to satisfy the necessary requirements.

An informal example: in order to know that a + b is a number, we have to know that
a and b are numbers, formally stated: a and b Œ N fi a + b Œ N. Or, considering types
depending on a parameter, one has to make sure that the parameters are correctly
chosen: a Œ N fi A(a) is a type. Given the required rules for equality, substitution, etc.,
one goes on to list the various type constructions. Here are some basic rules governing
judgments:

   

natural numbers N type

product
x A B x

x A B x

sum
x A B x

x A B x

disjoint sum
A B

A B

identity
t A s A A

I A t s

 

type
type

type
type

 
type  type

 type

type
type

: ( )
: ( )

: ( )
: ( )

, ,
( , , )

fi
◊

fi
◊

+
Œ Œ

P

S

   

a b A
b a A

=
=

:
:
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In the common set theoretical practice, Px : A.B(x) is the cartesian product, Sx : A.B(x)
is the disjoint sum of the family {B(x)|x Œ A}, A + B is the disjoint sum of two sets. 
The identity type is rather unusual, it is a set which is inhabited if t and s are identical,
otherwise it is empty.

Note that there is a dual reading: Px : A.B(x) becomes "x : A.B(x) in the logical 
notation, etc.

The characteristic properties of the various types and their canonical elements are
laid down by a number of rules:

Natural numbers

(0 is a natural number, and if t is a natural number then its successor St is also a natural
number). These rules introduce numbers.

Rxy is the recursor operator, its nature will be explained below.

The introduction rule is the common l- abstraction. The elimination rule yields the
application of the functional term t to the ‘input’ term t, usually written as t(t¢), or tt¢.

(elements of the disjoint sum are thought of as pairs, the first item is from the ‘para-
meter set’ A, the second on from the parametrized set Bx)

For the remaining rules see for example Troelstra and van Dalen (1988: 580).
In addition one has to give rules for ‘computing’ terms. Here are some examples:

Rx,y(0, t0, t1) � t0

Rx,y(St, t0, t1) � t1[x, t/y, Rxy(t1, t0, t1)
App.(lx · t, t¢) � t[t¢/x]
pi(t0, t1) � ti (i = 0, 1),
( p0(t), p1(t)) � t

Ï
Ì
Ó

S
S S

E
t x A B A

p t A
t x A B x A B

p t B p t x
:( : )

( ):
:( : ) :

( ): [ ( ) ]
◊ ◊ fitype  type

0 0 0

S
S

I
t A t B t x x A B

p t t x A B
: : [ ] :

( , ):( : )
¢ fi

¢ ◊
 type

   

P
P

P
P

I
x A t B x A B

x t x A B

E
t x A B t A x A B

App t t B t x

: : :
: :

:( : ) : :
( , ): [ ]

fi fi
◊ ◊
◊ ¢ fi

¢ ¢

type

 type

l

N E
t N t A x x N y A t A Sx x x N A

R t t t A t xx y

: : [ ] : , : : [ ] :
( , , ): [ ]

0 1

0 1

0 fi fi  type

,

N I N
t N
St N

0:
:
:
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Where � stands for ‘converts to.’ In the formalism these conversions are also presented
in the form of rules.

The system with the above types and terms is a kind of minimal system, there are a
number of meaningful types to be added to make it more convenient and to strengthen
it. But as it is, one can demonstrate a few characteristic features.

The properties that one establishes for types and terms can immediately be copied
for propositions and proofs. If one suppresses, as is usual, the proof terms, the old
natural deduction rules reappear. Example:

Thus we can get the intuitionistic provable proposition by operating in type theory.
Actually we get a few extras for working in a constructive setting. For example the

axiom of choice becomes derivable. In ordinary language the axiom reads:

"x Œ A$y Œ B(x)C[x, y] Æ $f Œ Px : A.B"x Œ A C[x, fx]

In type theory one can indeed find a term t such that:

t : Px : ASy : B.C[x, y] Æ Sz : (Px : A.B)Px : A.C[x, zx]

This confirms the intuitive argument that one would make in the proof interpretation.
Note that in the proper reading of the axiom of choice, one exploits the hybrid nature
of the system, terms may be elements or proofs. This is a strong practical feature of
Martin-Löf ’s type theory.

We have barely scratched the surface of the theory, but one can see the striking simi-
larity to the proof interpretation. To some extent, choice sequences have been incor-
porated in this framework as well, by admitting non-standard type theories.
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