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NETWORKS VERSUS SYMBOL

SYSTEMS: TWO APPROACHES TO

MODELING COGNITION

1.1 A Revolution in the Making?

The rise of cognitivism in psychology, which, by the 1970s, had successfully estab-
lished itself as a successor to behaviorism, has been characterized as a Kuhnian
revolution (Baars, 1986). Using Kuhn’s (1962/1970) term, the emerging cognitivism
offered its own paradigm, that is, its research strategies and its way of construing
psychological phenomena, both of which clearly distinguished it from behaviorism
(for overviews, see Neisser, 1967; Lindsay and Norman, 1972). This change was
part of a broader cognitive revolution that not only transformed a number of dis-
ciplines such as cognitive and developmental psychology, artificial intelligence, lin-
guistics, and parts of anthropology, philosophy, and neuroscience; it also led to an
active cross-disciplinary research cluster known as cognitive science (see Bechtel,
Abrahamsen, and Graham, 1998). Its domain of inquiry centrally included reason-
ing, memory, and language but also extended to perception and motor control. As
the cognitive paradigm developed, the idea that cognition involved the manipulation
of symbols became increasingly central. These symbols could refer to external phe-
nomena and so have a semantics. They were enduring entities which could be stored
in and retrieved from memory and transformed according to rules. The rules that
specified how symbols could be composed (syntax) and how they could be trans-
formed were taken to govern cognitive performance. Given the centrality of symbols
in this approach, we will refer to it as the symbolic paradigm.

In the 1980s, however, an alternative framework for understanding cognition
emerged in cognitive science, and a case can be made that it is a new Kuhnian para-
digm (Schneider, 1987). This new class of models are variously known as connectionist,
parallel distributed processing (PDP), or neural network models. The “bible” of the
connectionist enterprise, Rumelhart and McClelland’s two volumes entitled Parallel
Distributed Processing (1986), sold out its first printing prior to publication and sold
30,000 copies in its first year. The years since have seen a steady stream of additional
research as well as a number of textbooks (J. A. Anderson, 1995; Ballard, 1997; Elman
et al., 1996; McLeod, Plunkett, and Rolls, 1998; O’Reilly and Munakata, 2000; Quinlan,
1991) and new journals (e.g., Connection Science, Neural Computation, and Neural
Networks). Clearly connectionism has continued to attract a great deal of attention.

Connectionism can be distinguished from the traditional symbolic paradigm by
the fact that it does not construe cognition as involving symbol manipulation. It
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offers a radically different conception of the basic processing system of the mind-
brain, one inspired by our knowledge of the nervous system. The basic idea is that
there is a network of elementary units or nodes, each of which has some degree of
activation. These units are connected to each other so that active units excite or
inhibit other units. The network is a dynamical system which, once supplied with
initial input, spreads excitations and inhibitions among its units. In some types of
network, this process does not stop until a stable state is achieved.1 To understand a
connectionist system as performing a cognitive task, it is necessary to supply an
interpretation. This is typically done by viewing the initial activations supplied to
the system as specifying a problem, and the resulting stable configuration as the
system’s solution to the problem.

Both connectionist and symbolic systems can be viewed as computational systems.
But they advance quite different conceptions of what computation involves. In the
symbolic approach, computation involves the transformation of symbols according
to rules. This is the way we teach computation in arithmetic: we teach rules for
performing operations specified by particular symbols (e.g., + and ÷) on other sym-
bols which refer to numbers. When we treat a traditional computer as a symbolic
device, we view it as performing symbolic manipulations specified by rules which
typically are written in a special data-structure called the program. The connectionist
view of computation is quite different. It focuses on causal processes by which units
excite and inhibit each other and does not provide either for stored symbols or rules
that govern their manipulations. (For further discussion of the notion of computa-
tion, and whether it extends to the type of processing exhibited by connectionist
networks, see B. C. Smith, 1996; van Gelder, 1995; and chapter 8, below.)

While connectionism has achieved widespread attention only since the 1980s, it is
not a newcomer. The predecessors of contemporary connectionist models were
developed in the mid-twentieth century and were still being widely discussed during
the early years of the cognitive revolution in the 1960s. The establishment of the
symbolic paradigm as virtually synonymous with cognitive science (at least for
researchers in artificial intelligence and computational modeling in psychology) only
occurred at the end of the 1960s, when the symbolic approach promised great
success in accounting for cognition and the predecessors of connectionism seemed
inadequate to the task. A brief recounting of this early history of network models
will provide an introduction to the connectionist approach and to the difficulties
which it is thought to encounter. The issues that figured in this early controversy
still loom large in contemporary discussions of connectionism and will be discussed
extensively in subsequent chapters. For additional detail see Cowan and Sharp
(1988), from which we have largely drawn our historical account, and Anderson and
Rosenfeld (1988) and Anderson, Pellionisz, and Rosenfeld (1990), which gather
together many of the seminal papers and offer illuminating commentary.

1.2 Forerunners of Connectionism:
Pandemonium and Perceptrons

The initial impetus for developing network models of cognitive performance was the
recognition that the brain is a network. Obviously, given the complexity of the brain
and the limited knowledge available then or now of actual brain functioning, the
goal was not to model brain activity in complete detail. Rather, it was to model
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cognitive phenomena in systems that exhibited some of the same basic properties as
networks of neurons in the brain. The foundation was laid by Warren McCulloch
and Walter Pitts in a paper published in 1943. They proposed a simple model of
neuron-like computational units and then demonstrated how these units could per-
form logical computations. Their “formal neurons” were binary units (i.e., they
could either be on or off). Each unit would receive excitatory and inhibitory inputs
from certain other units. If a unit received just one inhibitory input, it was forced
into the off position. If there were no inhibitory inputs, the unit would turn on if the
sum of the excitatory inputs exceeded its threshold. McCulloch and Pitts showed
how configurations of these units could perform the logical operations of and, or,
and not. McCulloch and Pitts further demonstrated that any process that could be
performed with a finite number of these logical operations could be performed by a
network of such units, and that, if provided with indefinitely large memory capacity,
such networks would have the same power as a universal Turing machine.

The idea captured by McCulloch–Pitts neurons was elaborated in a variety of
research endeavors in succeeding decades. John von Neumann (1956) showed how
networks of such units could be made more reliable by significantly increasing the
number of inputs to each particular unit and determining each unit’s activation from
the statistical pattern of activations over its input units (for example, by having a
unit turn on if more than half of its inputs were active). In von Neumann’s networks
each individual unit could be unreliable without sacrificing the reliability of the
overall system. Building such redundancy into a network seems to require vastly
increasing the number of units, but Winograd and Cowan (1963) developed a pro-
cedure whereby a given unit would contribute to the activation decision of several
units as well as being affected by several units. This constitutes an early version of
what is now referred to as “distributed representation” (see section 2.2.4).

In addition to formal characterizations of the behavior of these networks, research
was also directed to the potential applications of these networks for performing
cognitive functions. The first paper by McCulloch and Pitts was devoted to deter-
mining the logical power of networks, but a subsequent paper (Pitts and McCulloch,
1947) explored how a network could perform pattern recognition tasks. They were
intrigued by the ability of animals and humans to recognize different versions of the
same entity even when quite different in appearance. They construed this task as
requiring multiple transformations of the input image until a canonical representa-
tion was produced, and they proposed two networks that could perform some of the
required transformations. Each network received as input a pattern of activation on
some of its units. The first network was designed to identify invariant properties of
a pattern (properties possessed by a pattern no matter how it was presented), while
the second transformed a variant into a standard representation. Because their inspira-
tion came from knowledge of the brain, they presented evidence that the first type
of network captured properties of the auditory and visual cortex, while the second
captured properties of the superior colliculus in controlling eye movements.

Frank Rosenblatt was one of the major researchers to pursue the problem of pattern
recognition in networks. In his elementary perceptron, a single layer of McCulloch–
Pitts units (shown as triangles in figure 1.1) received input from sensory units. Each
McCulloch–Pitts unit was influenced in its own way by the input activations, as
determined by a modifiable connection with each input that could range from strongly
inhibitory to strongly excitatory. Whether the resulting activation was sufficient for
the McCulloch–Pitts unit to fire depended upon its threshold (t). In this example,
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the output was sent to a motor unit (not an essential part of the architecture).
Rosenblatt also explored networks with multiple layers of McCulloch–Pitts units,
including some in which later layers might send excitations or inhibitions back to
earlier layers.

Rosenblatt differed from McCulloch and Pitts in making the strengths (com-
monly referred to as the weights) of the connections continuous rather than binary
and in introducing procedures for changing these weights so that perceptrons could
learn. For elementary perceptrons, Rosenblatt’s procedure was to have the network
generate, using existing weights, an output for a given input pattern. The weights on
connections feeding into any unit that gave what was judged to be an incorrect
response were changed; those feeding into units giving the correct response were
not. If the unit was off when it should have been on, the weight on the connection
from each active input unit was increased. Conversely, if the unit was on when it
should have been off, the weight from each active input unit was reduced. Rosenblatt
offered a proof of his important Perceptron Convergence Theorem with respect to
this training procedure. The theorem holds that if a set of weights existed that
would produce the correct responses to a set of patterns, then through a finite
number of repetitions of this training procedure the network would in fact learn to
respond correctly (Rosenblatt, 1961; see also Block, 1962).

Rosenblatt emphasized how the perceptron differed from a symbolic processing
system. Like von Neumann, he focused on statistical patterns over multiple units

Figure 1.1 An elementary perceptron, as investigated by Rosenblatt (1958). Inputs are
supplied on the four sensory units on the left and outputs are produced on the two motor
units at the bottom. The network’s computational units are the two McCulloch–Pitts
neurons (large triangles), each of which has an inhibitory connection to a threshold unit
(small dark circles). Each intersection between horizontal and vertical lines represents
the synapse of one sensory unit on one of the McCulloch–Pitts neurons. This way of
diagramming a network arranges the synapses such that, if their modifiable weights were
shown, they would be in tabular format. Reprinted with permission from J. D. Cowan and
D. H. Sharp (1988) Neural nets and artificial intelligence, Daedalus, 117, p. 90.

1

2

3

4

1 2

t t

Motor
units

Responses

Sensory
units



NETWORKS VERSUS SYMBOL SYSTEMS 5

(e.g., the proportion of units activated by an input), and viewed noise and variation
as essential. He contended that by building a system on statistical rather than logical
(Boolean) principles, he had achieved a new type of information processing system:

It seems clear that the class C′ perceptron introduces a new kind of information process-
ing automaton: For the first time, we have a machine which is capable of having ori-
ginal ideas. As an analogue of the biological brain, the perceptron, more precisely, the
theory of statistical separability, seems to come closer to meeting the requirements of a
functional explanation of the nervous system than any system previously proposed. . . .
As a concept, it would seem that the perceptron has established, beyond doubt, the
feasibility and principle of non-human systems which may embody human cognitive
functions at a level far beyond that which can be achieved through present day automatons.
The future of information processing devices which operate on statistical, rather than
logical principles seems to be clearly indicated. (Rosenblatt, 1958, p. 449; quoted in
Rumelhart and Zipser, 1986, in PDP:5, pp. 156–7)

Oliver Selfridge (1959) was another of the early investigators of the pattern recogni-
tion capabilities of network models. Unlike Rosenblatt, he assigned a particular
interpretation to each of the units in his network. One of the pattern recognition
tasks he explored was recognition of letters, a task that is made difficult by the fact
that different people write their letters differently. He called his model pandemon-
ium, capturing its reliance upon cognitive demons that performed computations in
parallel without attention to one another, each of them “shouting out” its judgment
of what letter had been presented (figure 1.2). These cognitive demons each special-
ized in gathering evidence for one particular letter; the greater the evidence the
louder they shouted. The decision demon then made the identification of the letter on
the basis of which unit shouted the loudest. The evidence gathered by each cognitive
demon was supplied by a lower layer of feature demons. Each feature demon re-
sponded if its feature (e.g., a horizontal bar) was present in the image. The feature
demon was connected to just those cognitive demons whose letters contained its
feature. Thus, a cognitive demon would respond most loudly if all of its features
were present in the image, and less loudly if some but not all of its features were
present. One of the virtues of this type of network is that it would still make a correct
or plausible judgment about a letter even if some of its features were missing or
atypical (see Selfridge, 1959; Selfridge and Neisser, 1960).

Early researchers recognized that, in addition to modeling pattern recognition,
networks might be useful as models of how memories were established. In particu-
lar, researchers were attracted to the problem of how networks might store associ-
ations between different patterns. An extremely influential proposal was developed
by Donald Hebb (1949), who suggested that when two neurons in the brain were
jointly active, the strength of the connection might be increased. This idea was
further developed by Wilfrid Taylor (1956), who explored networks of analog units
that took activations within a continuous range (e.g., − 1 to + 1). In the network he
proposed, a single set of motor units was connected to two different sets of sensory
units (which we will call the base units and the learning units). The network was set
up such that each pattern on the base units was associated with a pattern on the
motor units. A different set of patterns was defined for the learning units. No
associations to the motor units were specified, but each learning unit pattern was
assigned an association with one base unit pattern. When the network was run, the
associated sensory patterns were activated at the same time. The eventual outcome
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was that the learning units acquired the ability to generate the same motor patterns
as the base units with which they were associated.

Another researcher who pursued this type of associative memory network was
David Marr (1969), who proposed that the cerebellum is such a network which can
be trained by the cerebrum to control voluntary movements. The cerebellum con-
sists of five different kinds of cell or unit, with the modifiable connections lying
between the granule cells and Purkinje cells. The other cell types serve to set the
firing thresholds on these two cell types. The development of connections between
the granule cells and Purkinje cells, he proposed, underlay the learning of sequences
of voluntary movements in activities like playing the piano. Marr subsequently
proposed models for the operation of the hippocampus (Marr, 1971) and neocortex
(Marr, 1970).

The early history of network models we have summarized in this section indicates
that there was an active research program devoted to exploring the cognitive signific-
ance of such networks. It is important to emphasize that while some of this research
was explicitly directed at modeling the brain, for Rosenblatt and some other re-
searchers the goal was to understand cognitive performance more generally. The
relative prominence of research devoted to network models diminished in the late
1960s and early 1970s, as the alternative approach of symbolic modeling became
dominant. In section 1.3 we will examine what made the symbolic approach so
attractive to cognitive researchers, and in section 1.4 we will see that interest in
networks declined until revived by connectionism in the 1980s. Finally, in section
1.5 we will get an overview of connectionism’s continued development in the 1990s
via alliances with other new approaches to cognition and end by raising the prospect
of a rapprochement with the symbolic approach.

1.3 The Allure of Symbol Manipulation

1.3.1 From logic to artificial intelligence

The symbol manipulation view of cognition has several roots. One of these lies in
philosophy, in the study of logic. A logical system consists of procedures for mani-
pulating symbols. In propositional logic the symbols are taken to represent proposi-
tions (i.e., sentences) and connectives (e.g., and, or, if–then). Generally there is a
clear goal in such manipulation. For example, in deductive logic we seek a set of rules
that will enable us to generate only true propositions as long as we start with true
propositions. A system of such rules is spoken of as truth preserving. The simple
inference rule modus ponens is an example of a truth-preserving rule. From one
proposition of the form If p, then q and another of the form p, we can infer a
proposition of the form q (where p and q are placeholders for specific propositions,
e.g., “If I think, then I exist”).

We have actually adopted two perspectives in the previous paragraph, and it is the
relation between them that makes logic, and systems designed to implement logic, so
powerful. From one perspective, we treat the symbols for propositions as repres-
entational devices. For example, we conceive of a proposition as depicting a state of
affairs that might or might not hold in the world. From this perspective, we speak of
a proposition as either true (if the proposition corresponds to the way the world is) or
false (if it does not correspond). This perspective is generally known in logic as a
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model theoretic perspective. We think of a model as a set of entities and properties
and identify those propositions as true whose ascriptions correspond to the proper-
ties that the entities in the model actually possess. Within this framework we can
evaluate whether a pattern of inference is such that for any model in which the
premises are true, the conclusion will also be true. The second perspective, known
as the proof theoretic perspective, focuses not on the relations between the proposi-
tions and the entities they represent, but simply on the relations among the proposi-
tions themselves, construed as formal entities. When we specify inference rules in a
logical system, we focus only on the syntax of the symbols and disregard what they
refer to. What gives logic its power is, in part, the possibility of integrating these two
perspectives by designing proof procedures that are complete, that is, that will
enable us to derive any proposition that will be true in all models in which the
premises are true.

The relation between proof theory and model theory gives rise to a very powerful
idea. If intelligence depended only upon logical reasoning, for which the goal was
truth preservation, then it would be possible to set up formal proof procedures which
will achieve intelligent performance. However, intelligence does not depend solely
on being able to make truth-preserving inferences. Sometimes we need to make judg-
ments as to what is probably (but not necessarily) true. This is the domain of induct-
ive logic. The goal of inductive logic is to establish formal rules, analogous to the
proof theoretic procedures of deductive logic, that lead from propositions that are true
to those that are likely to be true. If such rules can be identified, then we may still be
able to set up formal inference procedures that produce intelligent performance.

The crucial assumption in both deductive and inductive logic is that in making
inferences involving a symbolic expression, we consider only its form. We can
disregard the expression’s representational function, that is, whether it is true or
not, and if true, what state of affairs it describes. For example, the form of the
expression (p and (q or r) ) is that of a particular connective (and) with two arguments;
one is a proposition (p) and the other is composed from another connective (or) with
two propositional arguments (q, r). Based just on the form of the expression, without
knowing anything about p or the other propositions, we infer p. If (p and (q or r))
is in fact true this is a sound inference, but if it is false then p may or may not be
true and inferring it risks error. Thus, it is important to take care that the initial
expressions (premises) are true before undertaking inference in a formal system.
One advantage gained is the efficiency of attending only to form; another is that the
symbols may be reinterpreted (i.e., assigned new representational roles) without
affecting the validity of the inferences made using them.

The idea that intelligent cognitive processes are essentially processes of logical
reasoning has a long history, captured in the long-held view that the rules of logic
constitute rules of thought. It is found in authors such as Hobbes, who treated
reasoning as itself comparable to mathematical computation and suggested that
thinking was simply a process of formal computation:

When a man reasoneth, he does nothing else but conceive a sum total, from addition of
parcels; or conceive a remainder, from subtraction of one sum from another; which, if it
be done by words, is conceiving of the consequence of the names of all the parts, to the
name of the whole; or from the names of the whole and one part, to the name of the
other part. . . . These operations are not incident to numbers only, but to all manner of
things that can be added together, and taken from one out of another. For as arithmeti-



NETWORKS VERSUS SYMBOL SYSTEMS 9

cians teach to add and subtract in numbers; so the geometricians teach the same in lines,
figures, solid and superficial, angles, proportions, times, degrees of swiftness, force, power,
and the like; the logicians teach the same in consequences of words; adding together two
names to make an affirmation, and two affirmations to make a syllogism; and many
syllogisms to make a demonstration; and from the sum or conclusion of a syllogism, they
subtract one proposition to find the other. (Hobbes [1651], 1962, p. 41)

The idea of thinking as logical manipulation of symbols was further developed in the
works of rationalists such as Descartes and Leibniz and empiricists such Locke and
Hume, all of whom conceived of the symbols as ideas, and formulated rules for
properly putting together or taking apart ideas.

With the development of automata theory and physical computers in the mid-
twentieth century, there was a burgeoning of more subtle and varied views of sym-
bols and symbol manipulation. From one perspective (well characterized in
Haugeland, 1981), the digital computer is simply a device for implementing formal
logical systems. Symbols are stored in memory registers (these symbols may simply
be sequences of 1s and 0s, implemented by on and off settings of switches). The
basic operations of the computer allow recall of the symbols from memory and
execution of changes in the symbols according to rules. In the earliest computers,
the rules for transforming symbols had to be specially wired into the machine, but
one of the major breakthroughs in early computer science was the development of
the stored program. The stored program is simply a sequence of symbols that
directly determines what operations the computer will perform on other symbols.
The relation between the stored program and those other symbols is much like the
relation between the formally written rule modus ponens and the symbol strings to
which it can be applied. Like the formal rules of logic, the rules in the computer
program do not consider the semantics of the symbols being manipulated, but only
their form. This perspective has been given a variety of renderings by such theorists
as Dennett (1978), Fodor (1980), and Pylyshyn (1984).

An alternative way to construe the semantics of computational systems was of-
fered by Newell and Simon (1981). For them, a computer is a physical symbol system
consisting of symbols (physical patterns), expressions (symbol structures obtained
by placing symbol tokens in a physical relation such as adjacency), and processes
that operate on expressions. They pointed out that there is a semantics (designation
and interpretation) within the system itself; specifically, expressions in stored list-
processing programs designate locations in computer memory, and these expres-
sions can be interpreted by accessing those locations. They regarded this internal
semantics as a major advance over formal symbol systems such as those of logic, and
argued that intelligence cannot be attained without it:

The Physical Symbol System Hypothesis. A physical symbol system has the necessary
and sufficient means for general intelligent action.

By “necessary” we mean that any system that exhibits general intelligence will prove
upon analysis to be a physical symbol system. By “sufficient” we mean that any phys-
ical symbol system of sufficient size can be organized further to exhibit general
intelligence. (Newell and Simon, 1981, p. 41)

Newell and Simon thus disagreed with those cognitive scientists who, in emphasizing
the continuity between computers and formal logic, retained the assumption that
syntax should be autonomous from semantics. They saw computers as providing an
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advantageous dovetailing of syntax and semantics that was not available within
abstract formal logic. A similar difference in perspective arose with respect to what
work the computer is regarded as carrying out. From a continuity perspective,
computers are powerful devices for implementing logical operations: programs can
be written to serve the same function as inference rules in a logical system. From the
alternative perspective (Simon, 1967), it took work in artificial intelligence to show
us that heuristics (procedures that might obtain the desired result, often by means of
an intelligent shortcut such as pruning unpromising search paths) are often more
useful than algorithms (procedures that are guaranteed to succeed in a finite number
of steps but may be inefficient in a large system).

Hence, work in artificial intelligence is rooted in formal logic, but has achieved
distinctive perspectives by pursuing the idea that computers are devices for symbol
manipulation more generally. AI programs have replaced formal logic as the closest
external approximation to human cognition; programs exist, for example, not only
for proving logical theorems or performing logical inference, but also for playing
chess at a grandmaster’s level and diagnosing diseases. The (partial) success of these
programs has suggested to many researchers that human cognitive performance also
consists in symbol manipulation. Indeed, until recently this analogy provided a
locus of unity among cognitive scientists.

1.3.2 From linguistics to information processing

Yet another root of the symbolic approach is found in Noam Chomsky’s program
in linguistics. In his review of B. F. Skinner’s Verbal Behavior, Chomsky (1959)
argued that a behavioristic account was inadequate to account for the ability of
humans to learn and use languages. Part of his argument focused on the creativity
of language: Chomsky contended that any natural language has an infinite number
of syntactically well-formed sentences, and that its speakers can understand and
produce sentences that they had not previously encountered (Chomsky, 1957, 1968).
This ability did not seem explicable in terms of learned associations between envir-
onmental stimuli and linguistic responses, even if these were augmented by such
processes as generalization and analogy. In Chomsky’s view, Skinner had not suc-
ceeded in adapting the constructs of behaviorism to the precise requirements of a
linguistic account, and a quite different approach was needed.

In particular, Chomsky developed the notion of generative grammar: to write a
grammar was to specify an automaton that could generate sentences (which could
comprise an infinite set if at least one recursive rule was included). One way to
evaluate such a grammar was to ask whether it could generate all of the well-formed
sentences of the target language, and only those sentences. Chomsky described and
evaluated several different classes of generative grammars with respect to natural
languages. Of particular importance, he argued that finite state grammars (those
most consistent with a behaviorist account) were too weak even when they included
recursive rules. They could generate an infinite set of sentences, but not the correct
set. Specifically, they were unable to handle dependencies across indefinitely long
strings (e.g., the dependency between if and then in sentences of the form “If A, then
B” where A is indefinitely long). To handle such dependencies, at least a phrase
structure grammar (and preferably a transformational grammar) was required. These
grammars produce phrase structure trees by applying a succession of rewrite rules
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(rules which expand one symbol into a string of subordinate symbols, each of which
can itself be expanded, and so forth). Indefinitely long constituents can be embedded
within such a tree without affecting the surrounding dependencies. Transforma-
tional rules (rules that modify one phrase structure tree to obtain a related, or
transformed, tree) provide additional power, but the most important and enduring
part of Chomsky’s argument is the rejection of finite state grammars.

Chomsky viewed generative grammar as a model of linguistic competence; that is,
a model of the knowledge of their language that speakers actually possess in their
minds. Although he pioneered the use of (abstract) automata for specifying gram-
mars, he did not intend to model linguistic performance (the expression of com-
petence in specific, real-time acts such as the production and comprehension of
utterances), nor did he implement his grammars on physical computers. Hence,
his version of cognitivism is somewhat more abstract than that of information-
processing psychology. Nevertheless, many psychologists were influenced by
Chomsky as they moved from behaviorism to information processing because his
grammars suggested ways to model human knowledge using linguistic-style rules
(that is, formally specified operations on strings of symbols).

Although Chomsky focused on linguistic competence, he did make some general,
controversial claims about linguistic performance. One of these claims, that a pro-
cess of hypothesis testing is involved in language acquisition, bore implications that
were fruitfully developed by Jerry Fodor (1975). Before we can test a hypothesis,
such as that the word dog refers to dogs, we must be able to state it. Fodor reasoned
that this requires a language-like medium, which he called the language of thought.
Further, since there is no way for a child to learn this language, it must be innate.
Thus, Fodor contended that procedures for formal symbol manipulation must be
part of our native cognitive apparatus. Fodor’s argument represents a minority
position within psychology, but virtually all researchers in the majority tradition of
information processing assume some weaker version of a symbolic approach to
cognition.

1.3.3 Using artificial intelligence to simulate
human information processing

We have briefly reviewed two strands of the symbolic approach: a strand leading
from formal logic to artificial intelligence, in which computers came to be viewed as
symbol manipulation devices, and a strand leading from linguistics to psychology, in
which human cognition came to be viewed likewise as consisting in symbol mani-
pulation. In cognitive science, these two strands are often brought together in a coop-
erative enterprise: the design of computer programs to serve as models or simulations
of human cognition. This raises a number of interesting issues that we can only
briefly mention here (a number of penetrating discussions are available, e.g.,
Haugeland, 1985). Does a successful computer simulation closely approximate men-
tal symbol processing at some appropriate level of abstraction, so that both the
human and the computer are properly construed as symbol processors? Or should
true symbol manipulation be attributed to only one of the two types of system; and
if so, to the human or the computer? On one view, the human is the true symbol
manipulator (because, for example, the human’s symbols are meaningful), and the
computer is merely a large calculator or scratchpad that can facilitate the process of
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deriving predictions from models of human performance (similar to the meteorolo-
gist’s use of computers to calculate equations that describe the fluid dynamics of the
atmosphere, for example). A contrasting view holds that the computer is the true
symbol manipulator, and that human cognition is carried out quite differently (in
less brittle fashion, as might be modeled in a network, for example). These issues,
which have been troublesome for some time, gained increased salience with the
reemergence of network models in the 1980s. We turn now to a brief history of
networks as an alternative to the symbolic tradition.

1.4 The Decline and Re-emergence of Network Models

1.4.1 Problems with perceptrons

By the 1960s substantial progress had been made with both network and symbolic
approaches to machine intelligence. But this parity was soon lost. Seymour Papert
provided a whimsical account:

Once upon a time two daughter sciences were born to the new science of cybernetics.
One sister was natural, with features inherited from the study of the brain, from the
way nature does things. The other was artificial, related from the beginning to the use
of computers. Each of the sister sciences tried to build models of intelligence, but from
very different materials. The natural sister built models (called neural networks) out of
mathematically purified neurones. The artificial sister built her models out of computer
programs.

In their first bloom of youth the two were equally successful and equally pursued by
suitors from other fields of knowledge. They got on very well together. Their relation-
ship changed in the early sixties when a new monarch appeared, one with the largest
coffers ever seen in the kingdom of the sciences: Lord DARPA, the Defense Depart-
ment’s Advanced Research Projects Agency. The artificial sister grew jealous and was
determined to keep for herself the access to Lord DARPA’s research funds. The
natural sister would have to be slain.

The bloody work was attempted by two staunch followers of the artificial sister,
Marvin Minsky and Seymour Papert, cast in the role of the huntsman sent to slay Snow
White and bring back her heart as proof of the deed. Their weapon was not the dagger
but the mightier pen, from which came a book – Perceptrons. . . . (1988, p. 3)

Clearly the publication of Perceptrons in 1969 represented a watershed. Thereafter
research on network models, such as perceptrons and pandemonium, no longer
progressed apace with work on symbolic models. Some researchers did continue to
pursue and develop network models and in fact established some important prin-
ciples governing network systems (see J. A. Anderson, 1972; Kohonen, 1972;
Grossberg, 1976). But their work attracted only limited attention and funding. What
is less clear is whether Minsky and Papert’s book precipitated the decline, or whether
it was only a symptom.

Minsky and Papert’s objective in Perceptrons was to study both the potential and
limitations of network models. They used the tool of mathematics to analyze what
kinds of computation could or could not be performed with an elementary perceptron
(one in which input units are connected to a single layer of McCulloch–Pitts units).
The centerpiece of their critique was their demonstration that there are functions,
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such as those determining whether a figure is connected or whether the number of
elements is odd or even, which cannot be evaluated by such a network. An example
is the logical connective exclusive or (usually abbreviated as “XOR”). The expres-
sion p XOR q is defined as true if p is true and q is not, or q is true and p is not. In
order for a perceptron to compute XOR, it is necessary to include an additional layer
of McCulloch–Pitts units (now known as hidden units) between the input units and
the original layer of McCulloch–Pitts units (now known as output units). While
Minsky and Papert recognized that XOR could be computed by such a multi-
layered network, they raised an additional problem: there were no training proced-
ures for multi-layered networks that could be shown to converge on a solution. As
we will discuss in section 3.2.2, an adaptation of Rosenblatt’s training procedure for
two-layer networks has now been developed for multi-layered networks. But Minsky
and Papert raised further doubts about the usefulness of network models. Even if
the problem were overcome, would it be possible to increase the size of networks to
handle larger problems? In more technical terms, this is a question as to whether
networks will scale well. Minsky and Papert offered the intuitive judgment that
research on multi-layered networks would be “sterile.”

The inability of networks to solve particular problems was, for many investigators,
only symptomatic of a more fundamental problem: the only kind of cognitive pro-
cesses of which networks seemed capable were those involving associations. Within
limits, a network could be trained to produce a desired output from a given input,
but that merely meant that it had developed procedures for associating that input
with the desired output. Associationism was exactly what many of the founders of
modern cognitivism were crusading against. Chomsky contended, for example, that
finite automata or simple associationistic mechanisms were inadequate to generate
all the well-formed sentences of the language. One needed a more powerful auto-
maton capable of recursive operations for generating trees and manipulating them. The
identification of network models with associationism thus undercut their credibility
and supported the pursuit of symbolic programs as the major research strategy in
cognitive science. As we will see in chapters 5 and 6, many advocates of the symbolic
tradition continue to fault modern connectionism on precisely this ground.

1.4.2 Re-emergence: The new connectionism

In the early 1980s the type of network research pioneered by Rosenblatt began once
again to attract attention and to gain adherents within what had now become known
as cognitive science. Geoffrey Hinton and James A. Anderson’s (1981) Parallel Models
of Associative Memory was a harbinger, based on a 1979 conference that brought
together UCSD’s core group of cognitive scientists (especially David Rumelhart
and Donald Norman) with some key researchers who had never abandoned networks
(e.g., Anderson, Hinton, Teuvo Kohonen, and David Willshaw) and others who were
newly attracted to them (e.g., Terrence Sejnowski from computational neuroscience
and Jerome Feldman from artificial intelligence). Papers that employed networks
to model various cognitive performances began to appear in cognitive journals. At
the 1984 meeting of the Cognitive Science Society, two symposia presented the net-
work approach and debated its role in cognitive science. One, entitled “Connection-
ism versus Rules: The Nature of Theory on Cognitive Science,” featured David
Rumelhart and Geoffrey Hinton advocating network modeling (connectionism) and
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Zenon Pylyshyn and Kurt Van Lehn arguing that networks were inadequate devices
for achieving cognitive performance. Debate at that session and others during the
conference occasionally became acrimonious as these “new connectionists”2 began
to press their alternative and challenged the supremacy of the symbolic approach.
Connectionist research increased dramatically across the 1980s and became part of
the established order in the 1990s, as departments hired young connectionists and
many senior researchers added connectionist modeling techniques to their reper-
toire as tools to be employed for at least some purposes.

An intriguing question is why connectionism should have re-emerged so strongly
when it did. Probably there was a confluence of factors. First, powerful new ap-
proaches to network modeling were developed around the early 1980s, including
new architectures, new techniques for training multi-layered networks, and ad-
vances in the mathematical description of the behavior of nonlinear systems. Many
of these innovations could be applied directly to the task of modeling cognitive
processes. Second, the credibility and persuasiveness of some of the key innovators
helped their message to get a hearing within cognitive science. For example, in chap-
ters 2 and 3 we discuss an important mathematical insight into network behavior that
was proposed by John Hopfield, a distinguished physicist. Anderson and Rosenfeld
commented:

John Hopfield is a distinguished physicist. When he talks, people listen. Theory in his
hands becomes respectable. Neural networks became instantly legitimate, whereas be-
fore, most developments in networks had been in the province of somewhat suspect
psychologists and neurobiologists, or by those removed from the hot centers of sci-
entific activity. (1988, p. 457)

Third, a related factor that was probably not essential but helped jump-start the new
developments was that certain people were in the right place at the right time (e.g.,
Hinton and Anderson were visitors at UCSD, a leading center of symbolic cognitive
science that became a leading center of network modeling, especially parallel distrib-
uted processing). Fourth, cognitive science had remained, either intentionally or
unintentionally, somewhat isolated from neuroscience through the 1970s. In large
part this was because there was no clear framework to suggest how work in the
neurosciences might bear on cognitive models. But by the 1980s cognitive scientists
began to see advantages in the neural-like architecture of connectionist models.
Fifth, this attraction to networks was one reflection of a more general interest in
finding a fundamental explanation for the character of cognition. Rule systems, as
they became more adequate, also became more complex. The desire for parsimony,
which earlier had characterized behaviorism, re-emerged. Sixth, a number of investig-
ators began to confront the limitations of symbolic models. While initially the task
of writing rule systems capable of accounting for human behavior seemed tractable,
intense pursuit of the endeavor raised doubts. Rule systems were hampered by
their “brittleness,” inflexibility, difficulty in learning from experience, inadequate
generalization, domain specificity, and inefficiencies due to serial search. Human cog-
nition, which the rule systems were supposed to be modeling, seemed to be relatively
free of such limitations.

Cognitive scientists who were motivated by several of these factors became con-
nectionists, and quite a battle ensued with advocates of the classic symbolic approach
beginning in the mid-1980s. At the same time, though, developments within both
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symbolic and network approaches often had the effect of softening the boundary
between them. Some symbolic modelers, focusing on the fifth and sixth factors listed
above, sought unified frameworks for cognitive modeling that shared some attributes
with network models. ACT-R (John R. Anderson, 1993; Anderson and Lebière,
1998) uses a localist network architecture for its long-term memory and a production
system architecture for operating on what is retrieved. The Soar architecture (Laird,
Newell, and Rosenbloom, 1987) makes a production system do both jobs. However,
as described in Newell’s (1990) master work, Unified Theories of Cognition, it seems
to approximate the spirit of connectionist models in its simplicity (e.g., fine-grained
rules compete in parallel with no conflict resolution attempted).

On the connectionist side, some designers made hybrid models by implementing
specific rule-based accounts in connectionist architectures so as to gain advantages
of both approaches (e.g., Touretzky and Hinton, 1988; see section 6.2.1, below).
Connectionists also found more general inspiration in certain approaches that emerged
from the symbolic tradition shortly before connectionism itself emerged, and never
fully resided in either the symbolic or connectionist camp; examples include schema
theory and story grammars (Rumelhart, 1975), probabilistic feature models (Smith
and Medin, 1981), symbol-based semantic networks with spreading activation (J. R.
Anderson, 1983), prototype theory (Rosch, 1975), and scripts (Schank and Abelson,
1977). Some of these can be given a connectionist implementation, arguably super-
ior to the original theory. For example, schemata should be flexible and easy to
modify, but this is much harder to achieve in a symbolic than in a connectionist
implementation (Rumelhart, Smolensky, McClelland, and Hinton, 1986, in PDP:14).
Also, a major effort to implement scripts in networks is the focus of chapter 7. Work
that combined aspects of the symbolic and connectionist approaches helped lay the
groundwork for the more pluralistic, if not always less contentious, cognitive science
that opened the twenty-first century.

1.5 New Alliances and Unfinished Business

The big story of recent years, however, is not the softening of the boundary between
symbolic and connectionist approaches. It is the new alliances that specialized sub-
groups of connectionists have formed with other emerging frameworks for under-
standing cognitive and sensorimotor abilities. In this second edition we examine
three such alliances.

• Dynamical approaches to cognition give long-overdue priority to the dimension
of time, and the mathematical and visual tools of dynamical systems theory
illuminate how certain types of connectionist networks achieve their success.

• Embodied cognition is the idea that mind cannot be understood only by modeling
internal activity; it is crucial to extend inquiry outwards to the mind’s interactive
couplings with the body and environment. Creating network controllers for
robots provides a way of pursuing this idea, and using simulated evolution as the
method makes them especially relevant to a new research field called “artificial
life.”

• Cognitive neuroscience is a field that has thrived recently due to the availability of
new ways to measure and form images of the activity of the brain during cog-
nitive activity. Network modelers increasingly are moving their focus down into
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the brain, tailoring the architecture and tasks performed by networks to know-
ledge about particular brain areas that has been gained not only from neuroimaging
but also from such traditional methods as lesion studies, ERP, and single-cell
recording in animals.

These new alliances will produce some of the most exciting work of the first decade
of the twenty-first century. Whatever their success, though, they will leave some
unfinished business. For reasons that we still do not understand, systems with
enough parallel, distributed, dynamical, embodied and neurally grounded activity to
do just about anything – perhaps even achieving Turing equivalence – repeatedly
find themselves in the same grooves. That is, they behave in ways that can be closely
approximated by symbolic models, and for many purposes it is the symbolic models
that are most convenient to use. This is especially clear in the case of language:
network models of the brain’s activities in processing language, however good they
get, will not displace linguistics. The real challenge for connectionists will not be to
defeat symbolic theorists, but rather to come to terms with the ongoing relevance of
the symbolic level of analysis. That is, the ultimate new alliance may be as simple,
and as difficult, as forming a new relationship with the long-time opponent.

In most circles this idea currently has little priority and few adherents. If the
future of connectionism lies in yet another alliance – one with the symbolic approach
it has been opposing vigorously for years – a glimpse of that future is available now
in Optimality Theory (OT; see Prince and Smolensky, 1993). This new linguistic
framework originated in an alliance between two people: Paul Smolensky, who was
a major contributor to connectionism in the 1980s, and Alan Prince, who was a
major opponent during that same period. They found common ground in the dis-
covery that various phonological phenomena can be described using a universal set
of soft constraints to select the optimal output among a large number of candidates.
A given language has its own rigid rank ordering of these constraints, which settles
the numerous conflicts between them.

As a very simple example (see Tesar, Grimshaw, and Prince, 1999, for the five-
constraint version from which this is drawn), the constraint NC is violated by
any syllable ending in a consonant (the coda) and the constraint NIV is violated
if a vowel is inserted in the process of forming syllables (the output) from a phoneme
string (the input). If these were the only two constraints to consider (in fact there
always are more), the input string /apot/ would be syllabified as .a.pot. in a language
that ranks NIV higher (e.g., English), but as .a.po.to. or some other vowel-final
form in a language that ranks NC higher (e.g., Japanese). Working with tal-
ented collaborators, Smolensky and Prince developed Optimality Theory into such
an elegant account that in just a few years it came to dominate work in phonology.

One unfinished task for optimality theorists is to achieve an equally compelling
OT account of syntax. Another is to achieve a well-motivated interface between OT
and the network-like level that is assumed to be its substrate (see Prince and
Smolensky, 1997, for the recent status of this effort). As we will see in chapter 2,
networks can be viewed as devices for constraint satisfaction and hence should
provide a fairly natural implementation of OT. In Smolensky’s harmonic grammar,
for example, weighted connections can be used to optimally satisfy a set of linguistic
constraints (in accord with Smolensky’s more general Harmony Theory; see
Smolensky, 1986, in PDP:6). The problem is that the networks of harmonic gram-
mar engage in competition quantitatively – various input patterns and the weights of
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various connections can yield many different outcomes – but a strict ranking of
constraints always emerges at the higher level of description provided by OT. Why?
Nobody knows. Until that problem is solved, the network level of description is of
limited explanatory utility with respect to OT. But the solution, when and if it is
found, may create a rapprochement between network models and symbolic accounts
that triggers an era of dramatic progress in which alignments are found and used all
the way from the neural level to the cognitive/linguistic level.

We mention this future possibility in order to now put it aside. Classic con-
nectionism and its battle with the classic symbolic approach fill the next six chapters
of this book, and the alliances that are currently most influential within connectionism
are the focus of the last three chapters. Specifically, we introduce network architec-
tures in chapter 2 and learning procedures in chapter 3. Then some specific network
models are presented in the context of philosophical positions: some that are con-
cordant with connectionism in chapter 4, followed by battles over rules in chapter 5,
and battles over representations in chapter 6. A modular network implementation
of a quasi-symbolic framework, scripts, is presented in some detail in chapter 7. We
then move to alliances with the dynamical approach in chapter 8 (a prickly alliance,
it will be seen), artificial life and embodied cognition in chapter 9, and cognitive
neuroscience in chapter 10. It will become increasingly apparent in these later chap-
ters that classic connectionism is just one way of “doing networks” and that an era of
pluralism is already well under way.

NOTES

1 If one were trying to model the ongoing life of the mind, as opposed to its response to a
specific input, one might not want the network to really stabilize but only to achieve
temporarily stable states, which might then be disrupted by new inputs or other internal
processes.

2 The earliest connectionists were not neural network modelers of the mid-twentieth cen-
tury like Rosenblatt, but associationists who viewed higher-order competencies as arising
from connections among simpler elements. For Wernicke in the late nineteenth century
the elements were neurally realized sensory and motor encodings; for Thorndike in the
early twentieth century they were stimuli and responses. Each called his approach
“connectionism.”
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