46

Sampling Labeled Deductive Systems

D. M. GABBAY

1 Labeled Deductive Systems in Context

In the past 30 years logic has undergone a serious evolutionary development. The
meteoric rise of the applied areas of computer science and artificial intelligence put
pressure on traditional logic to evolve. There was the urgent need to develop new logics
in order to provide better models of human behavior and actions. Such models are used
to help design products which aid/replace the human in his daily activity. As a result,
a rich variety of new logics have been developed and there was the need for a new
unifying methodology for the chaotic landscape of the new logics.

Such a methodology is Labeled Deductive Systems (LDS).

The purpose of this chapter is to introduce Labeled Deductive Systems and show that
many logical systems, new and old, monotonic and non-monotonic all fall within this
new framework. This chapter is based on Gabbay (1996).

We begin with the traditional view of what is a logical system.

Traditionally, to present a logic L, we need to first present the set of well-formed
formulas of that logic. This is the language of the logic. We specify the sets of atomic
formulas, connectives, quantifiers, and the set of well-formed formulas. Secondly, we
mathematically define the notion of consequence, that is, for sets of formulas A and
formulas Q, we define the consequence relation A F, Q, which is read ‘Q follows from
Ain the logic L.’

The consequence relation is required to satisfy the following intuitive properties:
(A, A’ abbreviates A U A).

Reflexivity
AFQif Qe A
Monotonicity

AFQ
AAFQ

742

SAMPLING LABELED DEDUCTIVE SYSTEMS
Transitivity

AFAAAFQ
AFQ

If you think of A as a database and Q as a query, then reflexivity means that the
answer ‘yes’ is given for any Q which is already listed in the database A. Monotonicity
reflects the accumulation of data, and transitivity is nothing but lemma generation,
namely, if A F A, then A can be used as a lemma to derive B from A.

These three properties have appeared to constitute the minimal and most natural
for a logical system, given that the main applications of logic were in mathematics and
philosophy.

The above notions were essentially put forward by Tarski (1956) in 1936 and is
referenced as Tarski consequence. Scott (1974), inspired by constructions in Gabbay
(1991), generalized the notion to allow Q to be a set of formulas I'. The basic relation
is then of the form A F T, satisfying:!

Reflexivity
AFTIHANT 20

Monotonicity

AT
AANFT

Cut

AAFTSA FATY
AN LT

Scott further showed that for any Tarski consequence relation there exist two Scott
consequence relations (a maximal one and a minimal one) that agree with it, namely,
that A F A (Tarski) iff A+ {A} (Scott) (see Gabbay 1981).

The above notions are monotonic. However, the increasing use of logic in computer
science and artificial intelligence has given rise to logical systems which are not mono-
tonic, that is to systems in which the axiom of monotonicity is not satisfied. There are
many such systems, satisfying a variety of conditions and presented in a variety of
ways. Furthermore, some are characterized in a proof theoretical and some in a model
theoretical manner. All these different presentations give rise to some notion of conse-
quence A F Q, but they only seem to all agree on reflexivity.” The essential difference
between these logics (commonly called non-monotonic logics) and the more traditional
logics (now referred to as monotonic logics) is the fact that A + A holds in the mono-
tonic case because of some A, — A, while in the non-monotonic case the entire set A is

743

D. M. GABBAY

somehow used to derive A. Thus if A is increased to A’, there is no change in the mono-
tonic case, while there may be a change in the non-monotonic case.

The above describes the situation current in the early 1980s. We have had a multi-
tude of systems generally accepted as ‘logics’ without a unifying underlying theory and
many had semantics without proof theory or vice versa, though almost all of them
were based on some sound intuitions of one form or another. Clearly there was the need
for a general unifying framework. An early attempt at classifying non-monotonic
systems was Gabbay (1985). It was put forward that basic axioms for a Tarski type con-
sequence relation should be reflexivity, transitivity, and restricted monotonicity, namely:

Restricted monotonicity (cumulativity)

AFAAFB
AAFB

A variety of systems seem to satisfy this axiom. See a survey in Makinson (1994) and
Gabbay (1996).

Although some sort of classification was obtained and semantical results were
proved, the approach does not seem to be strong enough. Many systems do not satisfy
restricted monotonicity. Other systems such as relevance logic, do not even satisfy
reflexivity. Others have a richness of their own which is lost in a simple presentation as
an axiomatic consequence relation. Obviously a different approach is needed, one
which would be more sensitive to the variety of features of the systems in the field.
Fortunately, developments in a neighboring area, that of automated deduction, seem
to be of help. New automated deduction methods were developed for nonclassical logics,
and resolution was generalized and modified to be applicable to these logics. In general,
because of the value of these logics in theoretical computer science and artificial
intelligence, a greater awareness of the computational aspects of logical systems was
developing and more attention was being devoted to proof-theoretical presentations. It
became apparent to us that a key feature in the proof-theoretic study of these logics is
that a slight natural variation in an automated or proof-theoretic system of one logic
(say L,), can yield another logic (say L,).

Although L, and L, may be conceptually far apart (in their philosophical motiva-
tion, and mathematical definitions) when it comes to automated techniques and proof
theoretical presentation, they turn out to be brother and sister. This kind of relation-
ship is not isolated and seems to be widespread. Furthermore, non-monotonic sys-
tems seem to be obtainable from monotonic ones through variations on some of their
monotonic proof-theoretical formulation, thus giving us a handle on classifying non-
monotonic systems.

This phenomena has prompted Gabbay (1992) to put forward the view that a
logical system L is not just the traditional consequence relation I (monotonic or non-
monotonic) but a pair (I, S,) where |- is a mathematically defined consequence relation
(i.e. the set of pairs (A, Q) such that A I- Q) satisfying whatever minimal conditions on
a consequence relation one happens to agree on, and S, is an algorithmic system for

744

SAMPLING LABELED DEDUCTIVE SYSTEMS

generating all those pairs. Thus according to this definition classical logic F perceived
as a set of tautologies together with a Gentzen system S, is not the same as classical
logic together with the two-valued truth table decision procedure T, for it. In our con-
ceptual framework, (&, S,) is not the same logic as (&, T}).

To illustrate and motivate our way of thinking, observe that it is very easy to move
from T, for classical logic to a truth table system T} for fukasiewicz n-valued logic. It
is not so easy to move to an algorithmic system for intuitionistic logic. In comparison,
for a Gentzen system presentation, exactly the opposite is true. Intuitionistic and
classical logics are neighbors, while fukasiewicz logics seem completely different. In
fact, some of the examples of this chapter show proof theoretic similarities between
Tukasiewicz's infinite valued logic and Girard’s Linear Logic, which in turn is proof
theoretically similar to intuitionistic logic.

There are many more such examples among temporal logics, modal logics, defeasi-
ble logics and others. Obviously, there is a need for a more unifying framework. The
question is then whether we can adopt a concept of a logic where the passage from
one system to another is natural, and along predefined accceptable modes of variation?
Can we put forward a framework where the computational aspects of a logic also play
a role? Is it possible to find a common home for a variety of seemingly different
techniques introduced for different purposes in seemingly different intellectual logical
traditions?

To find an answer, let us ask ourselves what makes one logic different from another?
How is a new logic presented and described and compared to another? The answer is
obvious. These considerations are usually dealt with on the meta-level. Most logics are
based on modus ponens and the quantifier rules are formally the same anyway and the
differences between them are meta-level considerations on the proof theory or seman-
tics. If we can find a mode of presentation of logical systems where meta-level features
can reside side by side with object level features then we can hope for a general frame-
work. We must be careful here. In the logical community the notions of object-level
vs. meta-level are not so clear. Most people think of naming and proof predicates in this
connection. This is not what we mean by meta-level here. We need a more refined
understanding of the concept. There is a similar need in computer science. In Gabbay
(1996) we devote a chapter to these considerations. See also Gabbay (1992).

We found that the best framework to put forward is that of a Labeled Deductive
System, LDS. Our notion of what constitutes a logic will be that of a pair (+, S;) where
F is a set-theoretic (possibly non-monotonic) consequence relation on a language L and
S, is an LDS, and where F is essentially required to satisfy no more than Identity (i.e.
{A} + A) and Surgical Cut (see below and Gabbay (1991; forthcoming)). This is a refine-
ment of our concept of a logical system mentioned above and first presented in Gabbay
(1992). We now not only say that a logical system is a pair (F, S;), but we are adding
that S, itself has a special presentation, that of an LDS.

An LDS system is a triple (L, T, M), where L is a logical language (connectives and
wffs) and T is an algebra (with some operations) of labels and M is a discipline of label-
ing formulas of the logic (from the algebra of labels I'), together with deduction rules
and with agreed ways of propagating the labels via the application of the deduction
rules. The way the rules are used is more or less uniform to all systems. In the general

745

D. M. GABBAY

case we allow I, the algebra of labels, to be an LDS system itself! Furthermore, if our
view of a logical system is that the declarative unit is a pair, a formula and a label, then
we can also label the pair itself and get multiple labeling.

The perceptive reader may feel resistence to this idea at this stage. First be assured
that you are not asked to give up your favourite logic or proof theory nor is there any
hint of a claim that your activity is now obsolete. In mathematics a good concept can
rarely be seen or studied from one point of view only and it is a sign of strength to have
several views connecting different concepts. So the traditional logical views are as valid
as ever and add strength to the new point of view. In fact, a closer examination of the
material in my book would reveal that manifestations of our LDS approach already exist
in the literature in various forms (see Anderson and Belnap (1975), Fitting (1983) and
Gabbay (1996) and the references there), however, they were locally regarded as con-
venient tools and there was not the realization that there is a general framework to be
studied and developed. None of us is working in a vacuum and we build on each others’
work. Further, the existence of a general framework in which any particular case can
be represented does not necessarily mean that the best way to treat that particular case
is within the general framework. Thus if some modal logics can be formulated in LDS,
this does not mean that in practice we should replace existing ways of treating the logics
by their LDS formulation. The latter may not be the most efficient for those particular
logics. It is sufficient to show how the LDS principles specialize and manifest themselves
in the given known practical formulation of the logic.

The reader may further have doubts about the use of labels from the computational
point of view. What do we mean by a unifying framework? Surely a Turing machine
can simulate any logic, is that a unifying framework? The use of labels is powerful, as
we know from computer science, are we using labels to play the role of a Turing
machine? The answer to the question is twofold. First that we are not operating at the
meta-level, but at the object level. Second, there are severe restrictions on the way we
use LDS. Here is a preview:

1. The only rules of inference allowed are the traditional ones, modus ponens, and
some form of deduction theorem for implication, for example.

2. Allowable modes of label propagation are fixed for all logics. They can be adjusted

in agreed ways to obtain variations but in general the format is the same. For

example, it has the following form for implications: (A — B) gets label t iff Vx € T';

[If A is labeled x then B can be proved with labels t + x], where I'; is a set of labels

characterizing the implication in that particular logic. For example I'; may be all

atomic labels or related labels to t, or variations. The freedom that different logics

have is in the choice of I'; and the properties of ‘+’. For example we can restrict the

use of modus ponens by a wise propagation of labels.

The quantifier rules are the same for all logics.

4. Meta-level features are implemented via the labeling mechanism, which is object
language.

w

The reader who prefers to remain within the traditional point of view of: assump-
tions (data) proving a conclusion can view the labeled formulas as another form of
data.

746

SAMPLING LABELED DEDUCTIVE SYSTEMS

There are many occasions when it is most intuitive to present an item of data in the
form t : A, where t is a label and A is a formula. The common underlying reason for
the use of the label t is that t represents information which is needed to modify A or to
supplement (the information in) A which is not of the same type or nature as (the
information represented by) A itself. A is a logical formula representing information
declaratively, and the additional information of t can certainly be added declaratively
to A to form A’, however, we may find it convenient to put forward the additional infor-
mation through the label ¢t as part of a pair t : A.

Take for example a source of information which is not reliable. A natural way of rep-
resenting an item of information from that source is t : A, where A is a declarative pre-
sentation of the information itself and t is a number representing its reliability. Such
expert systems exist (e.g. Mycin) with rules which manipulate both t and A as one unit,
propagating the reliability values t; through applications of modus ponens. We may also
use a label naming the source of information and this would give us a qualitative idea
of its reliability.

Another area where it is natural to use labels is in reasoning from data and rules. If
we want to keep track, for reasons of maintaining consistency and/or integrity con-
straints, where and how a formula was deduced, we use a label t. In this case, the label
tin t: A can be the part of the data which was used to get A. Formally in this case ¢ is
a formula, the conjunction of the data used. We thus get pairs of the form A, : A;, where
A; are formulas and A, are the parts of the database from which A; was derived.

A third example where it is natural to use labels is time stamping of data. Where
data are constantly revised and updated, it is important to time stamp the data items.
Thus the data items would look like t; : A;, where t; are time stamps. A; itself may be a
temporal formula. Thus there are two times involved, the logical time s; in A;(s;) and the
time stamping t; of A;. For reasons of clarity, we may wish to regard t; as a label rather
than incorporate it into the logic (by writing for example A*(t;, s;)).

To summarize then, we replace the traditional notion of consequence between for-
mulas of the form A, . . . ,A,F Bby the notion of consequence between labeled formulas

ti:AL Ayt i AyF s B

Depending on the logical system involved, the intuitive meaning of the labels varies. In
querying databases, we may be interested in labeling the assumptions so that when we
get an answer to a query, we can record, via the label of the answer, from which part
of the database the answer was obtained. Another area where labeling is used is tem-
poral logic. We can time stamp assumptions as to when they are true and query, given
those assumptions, whether a certain conclusion will be true at a certain time. Thus
the consequence notion for labeled deduction is essentially the same as that of any logic:
given assumptions does a conclusion follow.

Whereas in the traditional logical system the consequence is defined using proof
rules on the formulas, in the LDS methodology the consequence is defined by using
rules on both formulas and their labels. Formally we have formal rules for manipulat-
ing labels and this allows for more scope in decomposing the various features of the
consequence relation. The meta features can be reflected in the algebra or logic of the
labels and the object features can be reflected in the rules of the formulas.

747

D. M. GABBAY

The notion of a database or of a ‘set of assumptions’ also has to be changed. A data-
base is a configuration of labeled formulas. The configuration depends on the labeling
discipline. For example, it can be a linearly ordered set {a; : A}, ..., a,: A,}, a; <a, <
... < a, The proof discipline for the logic will specify how the assumptions are to be
used. We need to develop the notions of the Cut Rule and the Deduction Theorem in
such an environment. This we do in a later section.

The next two sections will give many examples of LDS disciplines featuring many
known monotonic and non-monotonic logics. It is of value to summarize our view
listing the key points involved:

e The unit of declarative data is a labeled formula of the form t : A, where A is a wff
of alanguage L and t is a label. The labels come from an algebra (set) of labels.

« A database is a set of labeled formulas.

* An LDS discipline is a system (algorithmic) for manipulating both formulas and their
labels. Using this discipline the statement A + T" is well defined for the two databases
A and T". Especially A F t : A is well defined.

* F must satisfy the minimal conditions, namely

Identity

{t:A}Ft: A

Surgical cut

AFt:AT[t:AlFs:B
I'[A]+s:B

where Tt : A] means that ¢t : A is contained/occurs somewhere in the structure I" and
I'[A] means that A replaces A in the structure.

* Alogical system is a pair (F, S;), where | is a consequence relation and S, is an LDS
for it.

2 Examples from Monotonic Logics

To motivate our approach we study several known examples in this section.

Example 2.1 below shows a standard deduction from Relevance Logic. The purpose
of the example is to illustrate our point of view. There are many such examples in
Anderson and Belnap (1975). Example 2.3 below considers a derivation in modal logic.
There we use labels to denote essentially possible worlds. The objective of the example
is to show the formal similarities to the relevance logic case in Example 2.1. Example
2.4 can reap the benefits of the formal similarities of the first two examples and
introduce, in the most natural way, a system of relevant modal logic. The objective of

748

SAMPLING LABELED DEDUCTIVE SYSTEMS

Example 2.4 is to show that the labels in Example 2.1 and Example 2.3 can be read as
determining the metalanguage features of the logic and can therefore be combined
‘declaratively’ to form the new system of 2.4. Example 2.5 considers strict implication.
This example shows that for strict S4 implication one can read the labels either as
relevance labels or as possible world labels. Example 2.6 shows how labels can interact
with quantifiers in modal logic. We continue with examples of relevance reasoning,
many-valued logics, formulas as types, realizability and conclude with a formal defini-
tion of an algebraic LDS for — and —.

EXAMPLE 2.1 (RELEVANCE AND LINEAR LOGIC) Consider a propositional language with
implication ‘-’ only. The forward elimination rule is modus ponens. From the theorem
proving view, modus ponens is an object language consideration. Thus a proof of
F(B— A) - ((A — B) = (A — B)) can proceed as follows:

Assume a, : B — A and show (A — B) — (A — B). Further assume a, : A — B and
show A — B. Further assume a; : A and show B. We thus end up with the following
problem:

Assumptions
1. a,:B—>A
2. a,:A—>B
3. as A

Derivation
4. aa;:B by modus ponens from lines (2) and (3).
5. amas: A from (4) and (1).
6. amaras: B from (5) and (2).
7. aaa,:A— B from (3) and (6).
8. @a,:(A— B)—>(A— B) from (2) and (7).
9. @3:(B—>A)—>((A—>B)—>(A— B)) from (1) and (8).

The meta aspect of this proof is the annotation of the assumptions and the keeping
track of what was used in the deduction. A meta-leval condition would determine the
logic involved.

A formal definition of the labeling discipline for this class of logics is given in Gabbay
(1996). For this example it is sufficient to note the following three conventions:

1. Each assumption is labeled by a new atomic label.
An ordering on the labels can be imposed, namely a; < a, < as. This is to reflect the
fact that the assumptions arose from our attempt to prove (B — A) — ((A — B) —
(A — B)) and not for example from (A — B) — ((B — A) — (A — B)) in which case
the ordering would be a, < a; < a;. The ordering can affect the proofs in certain
logics.

749

D. M. GABBAY

Box a;
(1)a;:B— A show (A —» B) » (A — B)
Box a»
(2)az:A—> B show A - B
Box a3
3)az: A show B
(4) azas : B

(5) araza3 : A

(6) azaia2a3 : B

(7) exit azajaz : A = B

(8) exit aza; : (A —» B) » (A — B)

(9) exit az : (B> A) - ((A—> B) =» (A > B)

Figure 46.1

2. If in the proof, A is labeled by the multiset oo and A — B is labeled by B then B can

be derived with a label o U B where ‘U’ denotes multiset union.

3. If B was derived using A as evidenced by the fact that the label o of A is a sub-
multiset of the label B of B (a0) then we can derive A — B with the label § — o

(‘=" is multiset subtraction).

The derivation can be represented in a more graphical way.
To show (B — A) = ((A = B) — (A — B)). See figure 46.1.

The above is the metabox way of representing the deduction. Note that in line 8,
multiset subtraction was used and only one copy of the label a, was taken out. The
other copy of a, remains and cannot be cancelled. Thus this formula is not a theorem
of linear logic, because the outer box does not exit with label &. In relevance logic, the
discipline uses sets and not multisets. Thus the label of line 8 in this case would be a,
and that of line 9 would be &. The above deduction can be made even more explicit as

follows:

750

SAMPLING LABELED DEDUCTIVE SYSTEMS

(B— A) = ((A = B) = (A — B)) follows with a label from Box a;.

Box a;

a; . B — A assumption
@ma; . (A— B) > (A— B) from Box a,

Box a,

a, : A — B assumption
ama,: A — Bfrom Box a;

Box a;
as: A assumption
a,:A— B reiteration from box a,
aa; : B by modus ponens

a,: B— A reiteration from box a,

a,: A — B repetition of an earlier line

aaras : A modus ponens from the two preceding lines

a,m,a,as : B modus ponens from the two preceding lines

The following meta-rule was used:

We have a system of partially ordered metaboxes a, < a, < a;. Any assumption in a

box a can be reiterated in any box b provided a < b.

REMARK 2.2 a. The above presentation of the boxes makes them look more like possible
worlds. The labels are the worlds and formulas can be exported from one world to another
according to some rules. The next example 2.3 describes modal logic in just this way.

b. Note that different meta-conditions on labels and metaboxes correspond to

different logics.

The following table gives intuitively some correspondence between meta-conditions

and logics.

Meta-condition

Logic

ignore the labels

intuitionistic logic

accept only the derivations
which use all the assumptions

relevance logic

accept derivations which
use all assumptions exactly once

linear logic

751

D. M. GABBAY

The meta-conditions can be translated into object conditions in terms of axioms and
rules. If we consider a Hilbert system with modus ponens and substitution then the
additional axioms involved are given below:

Linear Logic

A—>A

(A>(B—>C)—> (B> (A—>(Q)
(C>A) > (B—>C)—>(B—>A)
(C>A)— ((A— B)— (C— B))

Relevance Logic
Add the schema below to linear logic

(A>(B—>0C)—>(A—>B)—>(A—>0)

Intuitionistic Logic
Add the schema below to relevance logic:

A—(B—A)

The reader can note that the following axiom (Peirce Rule) yields classical logic. Further
note that for example, we can define ‘Linear Classical Logic’ by adding Peirce Rule to
linear logic. A new logic is obtained.

Classical Logic
Add the schema below to intuitionistic logic:

((A—> B)—> A) — A.

EXAMPLE 2.3 This example shows the meta-level-object level division in the case of
modal logic. Modal logic has to do with possible worlds. We thus think of our basic data-
base (or assumptions) as a finite set of information about possible worlds. This consists
of two parts. The configuration part, the finite configuration of possible worlds for the
database, and the assumptions part which tells us what formulas hold in each world.
The following is an example of a database:

Assumptions | Configuration

(1) ¢t:00B t<s
(2) s:0(B—=C)

The conclusion to show (or query) is:
t:00C.
The derivation is as follows:

752

SAMPLING LABELED DEDUCTIVE SYSTEMS

3. From (2) create a new point r with s<rand getr: B — C.
We thus have

Assumptions | Configuration

(1), (2), (3) ‘ t<s<r

From (1), since t < s we get s : [1B.
From (4), since s < r we get r : B.
From (5) and (3) we get r: C.
From (6) since s < r we get s : 0C.
From (7) using t < s we get t : 00C.

PN U

Discussion:
The object rules involved are:

CJE Rule:

t<s;t:[JA
s:A

O0I Rule:

t<s,s:B
t:0B

OE Rule:

t:0A
create a new point s with t <s and deduce s: A

Note that the above rules are not complete. We do not have rules for deriving, for
example, [JA. Also, the rules are all for intuitionistic modal logic.
The meta level consideration may be properties of <,

e.g. transitivity t<sAs<r—-t<ror
e.g. linearity: t<svt=svs<tetc.

EXAMPLE 2.4 The reader can already see the benefit of separating the meta-level
(the handling of possible worlds i.e. labels) and the object-level (i.e. formulas) features.
We can combine both the meta-level features of Examples 2.1 and 2.3 to create for
example a modal relevance logic in a natural way. Each assumption has a relevance
label as well as a world label. Thus the proof of the previous example becomes the
following:

753

D. M. GABBAY

Assumptions | Configuration

(1) (ay, t):0OOB t<s
(2) (a5 8):0B—C)

We proceed to create a new label r using OFE rule. The relevance label is carried over. We
havet<s<r.

3. (a,v):B—>C
Using [JE rule with relevance label carried over, we have:

4:. (ﬂl, S) . DB
5 (m,r1):B

Using modus ponens with relevance label updated
6. (aj,a,r):C
Using 0I rule:

7. (a, ays):0C
8. (m, ay t):00C

(8) means that we got t: 00C using both assumptions a; and a,.

There are two serious problems in modal and temporal theorem proving. One is
that of Skolem functions for Ix0A(x) and 03xA(x) are not logically the same. If we
skolemize we get 0A(c). Unfortunately it is not clear where c exists, in the current
world ((3x = ¢)0A(x)) or the possible world (¢(3x = ¢)A(x)).

If we use labeled assumptions then, t : Ix0A(x) becomes t : 0A(c) and it is clear that
¢ is introduced at t. In fact we shall write it as ¢'.

On the other hand, the assumption t : 03xA(x) will be used by the OF rule to intro-
duce a new point s, t < s and conclude s : IxA(x). We can further skolemize at s and get
s: A(c), with cintroduced at s and write it as ¢®. We thus need the mechanism of remem-
bering or labeling constants as well, to indicate where they were first introduced, and
we need rules to govern them. This is illustrated in Example 2.6 below.

Labeling systems for modal and temporal logics is studied in Gabbay (1991).

EXAMPLE 2.5 The following example describes the logic of modal S4 strict implica-
tion. In this logic the labels can be read either as relevance labels or as possible
worlds. S4 strict implication A — B can be understood as a temporal connective, as
follows:

‘A — Bis true at world t iff for all future worlds s to t and for ¢ itself we have that if
A is true at s then B is true at s.” Thus A — B reads ‘From now on, if A then B.

Suppose we want to prove that A — B and A — (B — C) imply A — C. To show this
we reason semantically and assume that at time t, the two assumptions are true. We

754

SAMPLING LABELED DEDUCTIVE SYSTEMS

want to show that A — Cis also true at t. To prove that we take any future time s, assume
that A is true at s and show that C is also true at s. We thus have the following
situation:

1. t:A—>B

2. t:A—>(B—>C)

3. showt:A—C
from box

3.1 Assumes:AShows:C
Since s is in the future of t, we get that at s,
(1) and (2) are also true.
3.2 s:A— Bfrom(1)
3.3 s:A— (B—C)from (2)
We now use modus ponens, because X — Y means
‘from now on, if X then Y’
3.4 s:Bfrom(3.1)and (3.2)
3.5 s:B— Cfrom(3.2)and (3.3)
3.6 s:C modus ponens from (3.4) and (3.5)

exitt:A—C

Notice that any ¢ : D can be brought into (reiterated) the box as s: D, provided it has
an implicational form, D = D; — D,. We can thus regard the labels above as simply
naming assumptions (not as possible worlds) and the logic has the reiteration rule
which says that only implications can be reiterated.

Let us add a further note to sharpen our understanding. Suppose — is read as a K4
implication (i.e. transitivity without reflexivity). Then the above proof should fail.
Indeed the corresponding restriction on modus ponens is that we do perform X, X —
Y + Y in a box, provided X — Y is a reiteration into the box and was not itself derived
in that same box. This will block line (3.6).

EXAMPLE 2.6 Another example has to do with the Barcan formula.

This is a case of quantified modal logic. We need to organize how to deal with quan-
tifiers in LDS. The idea is that whenever we introduce a variable or a constant under a
label we must label the variable/constant as well. Thus we have the rule:

t:3IxA(x) t: VxA(x)
t:A(ch) t:A(x")

we also have ¢t : x' and ¢ : ¢ holding, where ¢ : y means that y resides at t. A rule of the
form

755

D. M. GABBAY

is called a visa rule, allowing for a term y residing at t also to reside at s. Thus we have
the 3 introduction rule as

t:A(y)it:y
t:3yA(y)

and the universal generalization rule:

t:A(x);t:x,x universal variable
t:VxA(x)

To get the Barcan formula we need a visa rule

t:y;t<s
sty

We can now prove this formula.

Assumption |Conﬁguration

(1) t:Vx[dJA(x) ‘ t<s

We show
s: VxA(x)
We proceed intuitively

1. t:[A(x) (stripping Vx, remembering x is arbitrary), and ¢ : x.
2. Since the configuration contains s, t < s we get

s: A(x)

3. Since x is arbitrary we get by visa rule and [rule:
s: VXA(x); s:x

The rule

t:0A®K), t<s
s:A(x)

is allowed because of the visa rule.
To have the above rule for arbitrary x is equivalent to adopting the Barcan formula

axiom:

756

SAMPLING LABELED DEDUCTIVE SYSTEMS

VxOA(x) - OVxA(x)
To show (JVxA(x) — Vx[JA(x), we need the visa rule:

t:y;s<t
sty

The above are just a few examples for the scope we get using labels. The exact details
and correspondences are worked out in our monograph Gabbay (1996).

EXAMPLE 2.7 (RELEVANCE REASONING) The indices are o, B, and y = (B — o). The
reasoning structure is:

Assume o : A
Show 3 : B
If B D o then exit with (B— o) : A — B.

To showA —(B—C)FB— (A— ()
Assume

a:A—(B—C)

we use the metabox to show B — (A — C). See figure 46.2.

as : B show A = C

a3:A

a1a3:B—>C’

ajazas : C

exit ajaz : A = C

ezita; : B = (A— C)

Figure 46.2

757

D. M. GABBAY

EXAMPLE 2.8 (EUKASIEWICZ MANY-VALUED LOGICS) Consider fukasiewicz infinite-valued
logic, where the values are all real numbers or rationals in [0,1]. We designate O as
truth and the truth table for implication is

x = y=max(0, y — x)

Here the language contains atoms and implication only, assignments h give values to
atoms in [0,1], h(q) € [0,1] and h is extended to arbitrary formulas via the table for —
above. Define the relation

Ay, ..., A FB

to mean that for all h, h(A,) +. ..+ h(A,) = h(B), where + is numerical addition.

This logic can be regarded as a labeled deductive system, where the labels are values ¢
€ [0,1]. t: Ameans that h(A) =t, for a given background assignment h. The interesting
partis that to show t: A — B (i.e. that A — B has value t) we assume x : A (i.e. that A has
value x) and then have to show that B has value t + x, i.e. show t + x : B.

This is according to the table of —.

Thus figure 46.3 shows the deduction in box form:

z: A assumption

t+x:B

exitt: A— B

Figure 46.3

This has the same structure as the case of relevance logic, where + was understood
as concatenation.

A full study of many valued logics from the LDS point of view is given in Gabbay
(1996).

EXAMPLE 2.9 (FORMULAS AS TYPES) Another instance of the natural use of labels is the
Curry—Howard interpretation of formulas as types. This interpretation conforms
exactly to our framework. In fact, our framework gives the incentive to extend the for-
mulas as types interpretation in a natural way to other logics, such as linear and rele-
vance logics and surprisingly, also many valued logics, modal logics, and intermediate
logics. A formula is considered as a type and its label is a definable A-term of the same

758

SAMPLING LABELED DEDUCTIVE SYSTEMS

type. Given a system for defining A-terms, the theorems of the logic are all those types
which can be shown to be nonempty.
The basic propagation mechanism corresponding to modus ponens is:

th:A
t*>E:A>B
£4-8(¢4): B

It is satisfied by application.

Thus if we read the + in t*~® + t! as application, we get the exact parallel to the
general schema of propagation. Compare with relevance logic where + was concate-
nation, and with many valued logics where + was numerical addition!

To show t : A — B we assume x : A, with x arbitrary, that is start with a term x of
type A, use the proof rules to get B. As we saw, applications of modus ponens generate
more terms which contain x in them via application. If we accept that proofs generate
functionals, then we get B with a label y = t(x). Thus t = Axt(x). This again conforms
with our general schema for —.

In Gabbay and Queiroz (1992) on the Curry—-Howard interpretation we exploit this
idea systematically. There are two mechanisms which allow us to restrict or expand our
ability to define terms of any type. We can restrict A-abstraction (e.g. allow Axt(x) only
if x actually occurs in t), this will give us logics weaker than intuitionistic logic, or we
can increase our world of terms by requiring diagrams to be closed, for example, for
any ¢ of classical logic such that

(A — B) = [¢(A) — ¢(B)]

in classical logic, we want figure 46.4 to be complete, that is for any term ¢ there must
exist a term t’ (see figure 46.4).

Take for example the formula A — (B — A) as type. We want to show a definable
term of this type, we can try and use the standard proof (see figure 46.5), however,
with the restriction on A-abstraction which requires the abstracted variable to actually
occur in the formula, we cannot exit the inner box. For details see Gabbay and Queiroz
(1992).

»(A) w(B)

Figure 46.4

759

D. M. GABBAY

A A

exit: Ayb.zA

exit AzA \yP.z4

Figure 46.5

EXAMPLE 2.10 (REALIZABILITY INTERPRETATION) The well-known realizability interpre-
tation for intuitionistic implication is another example of a functional interpreta-
tion for — which has the same universal LDS form. A notation for a recursive function
{e} realises an implication A — B iff for any n which realizes A, {e} (n) realizes B.
Thus

e:A— Biff Vn[n: A= {e}(n): B]

It is an open problem to find an axiomatic description of the set of all wffs which are
realisable.

DEFINITION 2.11 (AN ALGEBRAIC LDS FOR IMPLICATION AND NEGATION) Let L be a
propositional language with —, — and atoms. Let A be an algebra of labels with
relations x < y for priority among labels, F(x, y) of compatibility among labels and
functions, f(x, y) for propagating labels and \+ for aggregating labels.

Given two labeled formulas t : A and s : A — B, F(s, t) must hold in order to licence
the modus ponens. If it does not hold, we cannot get B. If it does hold, we can get B but
we must know what is the label of B. This is the job of the function f(s, t). The aggre-
gation function tells us how different proofs of the same B with different labels can rein-
force one another. Thus if we have t : B and s : B we can aggregate and get t W s : B.
See Example 3.4 below for a very famous aggregation rule.

1. A declarative unit is a pair t : A, where A is a formula and t a term on the algebra of
labels (built up from atomic labels and the functions f and w+).

2. A database is a set containing declarative units and formulae of the form t; < s; and
F(t, s;) for some labels t, ..., s;, ...

760

*

SAMPLING LABELED DEDUCTIVE SYSTEMS

The — elimination rule, modus ponens, has the form

t:A;s:A—=B; F(s,t)
f(s,t):B

The = introduction rule has the form
* Tointroducet: A — B

Assume x : A, for x arbitrary in the set {y | F(t, y)}, and show f(t, x) : B.
Negation rules have the form

t:B;s:—B
r:C

We are not writing any specific rules because there are so many options for negation.
A family of flattening rules Flat of the form

t:A,. i Avs i=A,LL sy A Y <Yy i=12,00, =12,
'Y:Flat({tl,...,tk,sl,...,Sm})

where 7 is either O or 1 and is the result of applying the function Flat on the set
containing t;, s; and where y;, y; range over {t, ..., t;, Si, ..., S,}.” The meaning
of yis as follows. Since obviously we can prove both A and —A with different labels,
we need a flat decision on whether we take A, (y= 1) or —A, (y=0).

Aggregation rule

t:A;s:A
tys:A

W is associative, commutative and fis distributive over U+.

A proof is a sequence of expressions which are of the form t <s, F(t, s) or t : A such
that each element of the sequence is either an assumption or is obtained from pre-
vious elements in the sequence by an elimination rule or is introduced by a subcom-
putation via the — introduction rule. Flattening rules are to be used last.

3 Examples from Non-monotonic Logics

The examples in the previous section are from the area of monotonic reasoning. This
section will give examples from non-monotonic reasoning. As we have already men-
tioned, we hope that the idea of LDS will unify these two areas.

EXAMPLE 3.1 (ORDERED LOGIC) An ordered logic database is a partially ordered set of
local databases, each local database being a set of clauses. Figure 46.6 describes an
ordered logic database.

761

D. M. GABBAY

-a

-b .

d ~p g

$1 s2 O q
-q
b+ —a
t a+ b t2 d e t
c+ —d
O
(%)
Figure 46.6

The local databases are labeled t,, t,, t;, s;, s, and ¢ and are partially ordered as in
the figure.

To motivate such databases, consider an ordinary logic program C, = {p < —q}. The
computation of a logic program assumes that, since g is not a head of any clause, —q
is part of the data (this is the closed world assumption). Suppose we relinquish this prin-
ciple and adopt the principle of asking an advisor what to do with —q. The advisor might
say that —q succeeds or might say that —q fails. The advisor might have his own
program to consult. If his program is C,, he might run the goal q (or —¢q), look at what
he gets and then advise. To make the situation symmetrical and general we must
allow for Horn programs to have rules with both g and —q (i.e. literals) in heads and
bodies and have any number of negotiating advisors. Thus we can have C, = {—q},
Cy={q < —q} and C, depends on C,. Ordered logic develops and studies various aspects
of such an advisor system which is modeled as a partially ordered set of theories. Such
a logic is useful, for example for multi-expert systems where we want to represent the
knowledge of several experts in a single system. Experts may then be ordered accord-
ing to an ‘advisory’ or a relative preference relation.

A problem to consider is what happens when we have several advisors that are in
conflict. For example, C; depends on C, and C; depends on C;. The two advisers, C, and
C;, may be in conflict. One may advise —q, the other q. How to decide? There are several
options:

1. We can accept ¢ if all advisors say ‘yes’ to q.
2. We can accept q if at least one advisor says ‘yes’ to q.
3. We can apply some non-monotonic or probabilistic mechanism to decide.

If we choose options (1) or (2) we are essentially in modal logic. To have a node t and
to have ?q refer to advisors t;, ..., t, witht<t,i=1, ..., nislike considering ?[Jq at
t in modal logic with ¢, . . ., t, possible worlds in option 1 and like considering ¢q at t
in option (2). Option (3) is more general, and here an LDS approach is most useful. We

762

SAMPLING LABELED DEDUCTIVE SYSTEMS

see from this advisor’s example an application area where the labels arise naturally and
usefully. The area of ordered logic is surveyed in Vermeir and Laenens (1990).

EXAMPLE 3.2 (DEFEASIBLE LOGIC) This important approach to non-monotonic reasoning
was introduced by Nute (1994). The idea is that rules can prove either an atom q or its
negation —q. If two rules are in conflict, one proving g and one proving —q, the deduc-
tion that is stronger is from a rule whose antecedent is logically more specific. Thus the
database:

t;: Bird (x) — Fly (x)

t,: Big (x) A Bird (x) — — Fly (x)
t;: Big (a)

ty: Bird (a)

th <t
t;
ty

can prove:

t2t3t4: —lFly(a)
tit, :Fly(a)

The database will entail — Fly (a) because the second rule is more specific.

As an LDS system the labeling of rules in a database A is very simple. We label a rule
by its antecedent. The ordering of the labels is done by logical strength relative to some
background theory © (which can be a subtheory of A of some form). Deduction pays
attention to the strength of labels.

EXAMPLE 3.3 (FALLACIES) The reader should note that our point of view and the use of
labels is genuinely more general and is capable of yielding more. We describe an unex-
pected application of our view. There is a serious, well-motivated and well-organized
community, the informal logic and argumentation community, studying the nature of
human reasoning and argumentation in general and attempting to foundationally
explain the role of the fallacies in human arguments. Fallacies are argument structures
which appear to be correct and convincing, but are actually wrong. Many of them can
be effectively used in some situations, but not in others. Any account of real life human
practical reasoning must give account of the fallacies. In Hamblin (1970), a fallacy is
an argument that “seems to be valid but is not so.”

The handling of the fallacies in the traditional literature is divergent between two
extremes.

There are those who reject the fallacies as not having any logical value (see Lambert
and Ulrich 1980) and there are those who try to see some logic in them. Among the
latter are John Woods and Douglas Walton. They believe that the traditional fallacies
can be explained within the framework of other logics, such as inductive logics,

763

D. M. GABBAY

non-classical logics, logics of plausible reasoning, relevance logics and more. The
Woods—Walton approach, see Walton (1990); Woods (1988); Woods and Walton
(1989), is successful in many cases in showing and explaining how some fallacies are
really not fallacies. However the Woods—Walton approach was in principle criticized by
F. H. Van Emeron and R. Grootendorst (1992), who point out that this approach,
although successful in many cases, creates new and serious problems. Van Emeron and
Grootendorst, justly point out that every fallacy, in this approach needs, so to speak, its
own logic. Van Emeron and Grootendorst say:

For practical purposes this approach is not very realistic. In order to be able to carry out
the analyses, a considerable amount of logical knowledge is required. There are also some
theoretical disadvantages inherent in this approach. By relying on so many logical systems,
one only gets fragmentary description of the various fallacies, and no overall picture of the
domain of the fallacies as a whole. Ideally, one unified theory that is capable of dealing
with all the different phenomena, is to be preferred. (van Emeron and Grootendorst
1992:103)

We agree with both Van Emeron—Grootendorst and with Woods—Walton. There is
indeed a possible candidate for a unifying logic in which suitable theories for practical
reasoning and the fallacies can be formulated. It is the framework of Labeled Deductive
Systems.

This example is a preliminary study at classifying and explaining some of the
fallacies in LDS.

Here we quote Douglas Walton's words

until we have a clearer definition of theoretical reasoning, it is not possible to refute the
argument that there is one underlying kind of reasoning that has two uses — practical
problem solving and theoretical problem solving. (Walton 1990: 353)

Well-known among the fallacies is the fallacy ad hominem, the fallacy of attacking
not the argument but the person presenting it. This kind of reasoning is some-
times acceptable and sometimes not. It is generally considered nonlogical, although
admittedly extensively used by the human practical reasoner. In our framework, this
fallacy has a natural place.

Consider the notion of a database A. Thisis a structure of declarative units of the form
t: A, where tis the label and A the formula. The label t annotates A. Suppose the annota-
tion indicates the priority of the formula A and that in an external ordering < gives the
relative strength of the priorities. Thus a priority database can be for example

{t:A,s:B, t<s}

t and s can be numbers of algebraic terms and t < s indicates that B has a higher
priority than A. This priority can be used in derivation. For example, in the presence
of A — —C, B — C of equal priority, C will be derived.

The data items A and B are formulas of the logic L;, which is applied to some appli-
cation area. In many areas it is quite reasonable to have the labels themselves be

764

SAMPLING LABELED DEDUCTIVE SYSTEMS

formulas o, B of another language and logic L,, describing the origin and nature of the
data items, A, B. Some reasoning in L, may be available to determine the priority (if
any) of o and B. A formula W(o., B) and a base theory © (possibly dependent on A) of
L, may be used for this purpose, that is we have:

o <Biff © -, P(a, B).
The simplest condition (in case L, has some form of implication) is
a<PBiff O, B — 0.

Note that our labels are wffs o of L, labelling wifs A of L, and the base theory © deter-
mines the priorities of labels. We now explain the logical force of the fallacy by an
example. Suppose we are faced with the following deduction.

a:A—>-=C
B:B—C
YA

Y:B
OhB—oa

We must conclude C, because B has higher priority than o. To counter this argument,
we may either prove —C from additional data or we may attack the source of infor-
mation, that is add ©, to © or try and show that ® U 0, ¥, B — o?, (Note that L,
reasoning is also non-monotonic!). This move appears to us as attacking, not the
argument, but its source. However, in the correct context (priority logic) it is a correct
move. Other fallacies which are explainable in this framework are ad verecundiam,
appeal to unsuitable authority, where the labeling is incorrect and fallacies of irrele-
vance. A systematic study of the fallacies in our context will (hopefully) be done
elsewhere.

To make the above database more concrete consider the following scenario. A man
is imprisoned for fraud for a long period of time. During that period, medical evidence
emerges that the prisoner has terminal cancer. The question is whether to release him
from jail. One legal argument supports an early release. The problem seems to be that
the prisoner made some threats during the trial and a social and psychological report
cannot exclude the possibility that the prisoner might use his remaining free days for
revenge. Our database now reads

m:B medical file m supporting the statement that the prisoner
has cancer
p:A social workers report supporting the statement that the

prisoner is seeking revenge

o : A — —C legal precedents o supporting the rule
that in case of possible revenge the prisoner should
not be released

765

D. M. GABBAY

B:B—C legal reasoning B supporting that in
case of cancer the prisoner should be released
p<m medical files are stronger than ‘psychological’ files’

From the above data we can conclude

Bxm:C
and
axp:=C

Since both B and m have higher priority, C will follow by the flattening process.

If we want to change the conclusion (to get —C), we must either attack the medical
file m, discrediting the medical evidence or boost up the credibility of the psychological
report.

EXAMPLE 3.4 (DEMPSTER—SHAFER RULE) The present example presents a very well-known
rule of aggregation, the Dempster—Shafer rule. Our exposition relies on Ng and
Subrahmanian (1994).

The algebra A we are dealing with is the set of all subintervals of the unit interval
[0,1]. The Dempster—Shafer addition on these intervals is defined by

[a,b]@[c,d]:[a.d-l-b.c_a'c b-d}

1-k " 1-k

where k=a- (1 -d)+c-(1-Db), where ‘', ‘+’, ‘-’ are the usual arithmetical operations.
The compatibility condition required on a, b, ¢, d is

F(a, b], [c, d]) = k= 1.

The operation @ is commutative and associative. Let e =[0,1].
The following also holds:

e [a, b] ®e=]a,b]

e For[a, b] #[1,1] we have [a, b] ® [0,0] =[0,0]

e For [a, b] #[0,0] we have [a, b] @ [1,1]=[1,1]

* [a, b] @ [c, d] = ¢ iff either [a, b] =[0,0] and [c, d] =[1,1] or [a, b] =[1,1] and [c, d]

=[0,0].

In this algebra, we understand the declarative unit [a, b] : A as saying that the proba-
bility of the event represented by A lies in the interval [a, b]. We have, of course

[a.b]:A— B;[c.d]: A
[a,b]®][c,d]: B

766

SAMPLING LABELED DEDUCTIVE SYSTEMS

provided F([a, b], [c, d]) holds.
It is also possible to move to a higher language and write clauses of the form

ti(tit A) = (8 Ay) = (851 Ay))

which is more like the way clauses are used in traditional Dempster—Shafer
applications.

4 Conclusion and Further Reading

Logic is widely applied in computer science and artificial intelligence. The needs of the
application areas in computing are different from those in mathematics and philoso-
phy. In response to computer science needs, intensive research has been directed in the
area of nonclassical and non-monotonic logic. New logics have been developed and
studied. Certain logical features, which have not received extensive attention in the pure
logic community, are repeatedly being called upon in computational applications. Two
features in logic seem to be of crucial importance to the needs of computer science and
stand in need of further study. These are:

1. The meta-level features of logical systems
2. The ‘logic’ of Skolem functions and unification

The meta-language properties of logical systems are usually hidden in the object lan-
guage. Either in the proof theory or via some higher-order or many-sorted devices. The
logic of Skolem functions is nonexistent. Furthermore, the traditional presentation of
classical and nonclassical logics is not conducive to bringing out and developing the
features needed for computer science applications. The very concept of what is a logical
system seems to be in need of revision and clarification. A closer examination of clas-
sical and nonclassical logics reveals the possibility of introducing a new approach to
logic; the discipline of Labeled Deductive Systems (LDS) which, I believe, will not only be
ideal for computer science applications but will also serve, I hope, as a new unifying
logical framework of value to logic itself. What seem to be isolated local features of some
known logics turn out to be, in my view, manifestations of more general logical phe-
nomena of interest to the future development of logic itself.

Semantics for LDS logics is presented in my book on Fibring Logics (Gabbay 1998).

LDS is part of a more general view of logic. This view is discussed elsewhere (Gabbay
1991, 1996, forthcoming), however in brief, we claim the following. The new concept
of alogical system is that of a network of LDS systems which has mechanisms for com-
munication (through the labels, which code meta-information) and evolution or change.

Evaluation is a general concept which can embrace updating, abduction, consis-
tency maintenance, action, and planning. The above statement of position is vague
but it does imply that we believe that notions like abduction and updating are
logical notions of equal standing to those of provability. See Gabbay and Woods (to

appear).

767

D. M. GABBAY

Notes

1 The similarity with Gentzen sequents is obvious. A sequent A - I is a relation between A and
T". Such a relation can either be defined axiomatically (as a consequence relation) or be gen-
erated via closure conditions like A - A (initial) and other generating rules. The generating
rules correspond to Gentzen rules. In many logics we have A F T'iff @ F AA — VI, which gives
an intuitive meaning to +.

2 Recently logical systems were put forward by Makinson—Torre (2001) which do not satisfy
reflexivity.

3 Flatis a function defined on any set of labels and giving as value a new label. To understand
this, recall another function on numbers which we may call Sum. It adds any set of numbers
to give a new number: their sum!

References

Anderson, A. R. and Belnap, N. D. (1975) Entailment. Princeton, NJ: Princeton University Press.

Basin, D., D’Agostino, M., Gabbay, D. M., Matthews, S. and Vigano, L. K. (eds.) (2000) Labelled
Deduction. Dordrecht: Kluwer.

Van Emeron, F. H. and Grootendorst, R. (1992) Argumentation, Communication and Fallacies. New
York: Lawrence Elbaum.

Fitting, M. (1983) Proof Methods for Modal and Intuitionistic Logic. Dordrecht: Kluwer.

Gabbay, D. M. (1981) Semantical Investigations in Heyting's Intuitionistic Logic. Amsterdam: Reidel.

Gabbay, D. M. (1985) Theoretical foundations for non-monotonic reasoning, in K. Apt (ed.),
Expert Systems, Logics and Models of Concurrent Systems (pp. 439-59). Berlin: Springer Verlag.

Gabbay, D. M. (1992) Theory of algorithmic proof. In S. Abramsky, D. M. Gabbay and T. S. E.
Maibaum (eds.), Handbook of Logic in Theoretical Computer Science, vol. 1 (pp. 307-408). Oxford:
Oxford University Press.

Gabbay. D. M. (1998) Fibring Logics. Oxford: Oxford University Press.

Gabbay, D. M. and Woods, J. (to appear) Agenda Relevance, I and II.

Gabbay, D. M. (1969) The Craig interpolation theorem for intuitionistic logic I and II. In R. O.
Gandy (ed.), Logic Colloquium 69, (pp. 391-410). Amsterdam: North Holland.

Gabbay, D. M. (1991) Abduction in labelled deductive systems, a conceptual abstract. In R. Krose
and P. Siegel (eds.) ECSQAU 91, Lecture notes in Computer Science 548 (pp. 3—12). Berlin:
Springer Verlag.

Gabbay, D. M. (1991) Theoretical Foundations for Non Monotonic Reasoning, Part 2: Structured Non-
Monotonic Theories. In SCAI '91, Proceedings of the Third Scandanavian Conference on AL (pp.
19-40). Amsterdam: IOS Press.

Gabbay, D. M. (1991) Modal and temporal logic programming II. In T. Dodd, R. P. Owens and S.
Torrance (eds.), Logic Programming — Expanding the Horizon (pp. 82—123). New York: Ablex.
Gabbay, D. M. (1992) How to construct a logic for your application. In Proceedings of the 16th

German AI Conference, GWAI 92, Springer Lecture Notes on Al, vol. 671, pp. 1-30.

Gabbay, D. M. (1992) Modal and temporal logic programming III: metalevel features in the object
language. In L. F. del Cerro and M. Penttonen (eds.), Non-Classical Logic Programming (pp.
85-124). Oxford: Oxford University Press.

Gabbay, D. M. (1994) Labelled deductive systems and situation theory. In P. Aczel, D. Israel,
Y. Katagin and S. Peters (eds.), Situation Theory and Applications, vol. 3 (pp. 89-118). Stanford,
CA: CSLI

768

SAMPLING LABELED DEDUCTIVE SYSTEMS

Gabbay, D. M. (1996) Labelled Deductive Systems, vol. 1. Oxford: Oxford University Press.

Gabbay, D. M. (forthcoming) A General Theory of Structured Consequence Relations. To appear in a
volume of substructured logics, ed. P. Schréder-Heister and K. Dosen. Oxford: Oxford University
Press.

Gabbay, D. and Olivetti, N. (2000) Goal Directed Proof Theory. Dordrecht: Kluwer.

Gabbay, D. M. and Queiroz, R. J. G. B. (1992) Extending the Curry—-Howard interpretation to
linear, relevance and other resource logics. Journal of Symbolic Logic, 57, 1319-66.

Gabbay, D. M. and Woods, J. (to appear) Reach of Abduction, vols. 1 and 2.

Hamblin, C. L. (1970) Fallacies. London: Methuen.

Kraus, S., Lehmann, D. and Magidor, M. (1990) Preferential models and cumulative logics.
Artificial Intelligence, 44, 167-07.

Lambert, K. and Ulrich, W. (1980) The Nature of Argument. New York: Macmillan.

Lehmann, D. (1989) What does a conditional knowledge base entail? In KR 89, Toronto, May 89
(pp. 1-18). New York: Morgan Kauffman.

Makinson, D. (1988) General theory of cumulative inference. In M. Reinfrank, J. de Kleer, M. L.
Ginsberg and E. Sandewall (eds.), Non-monotonic Reasoning. Springer Verlag Lecture Notes on
Artificial Intelligence No. 346.

Makinson, D. (1994) General patterns in nonmonotonic reasoning. In D. M. Gabbay, C. J. Hogger,
and J. A. Robinson (eds.), Handbook of Logic in Artificial Intelligence and Logic Programming,
vol. 3 (pp. 35-110). Oxford: Oxford University Press.

Makinson, D. and van der Torre, L. (2001) Constraints for input/output logics. Journal of
Philosophical Logic, 30, 155-85.

Ng, R. and Subrahmanian, V. (1994) Dempster—Shafer logic programs and stable semantics. In
J. N. Crossley and J. Be Remmel (eds.), Logical Methods (pp. 654—704). Birkhauser.

Nute, D. (1994) Defeasible logic. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson (eds.), Handbook
of Logic in Artificial Intelligence and Logic Programming, vol. 3 (pp. 353-98). Oxford: Oxford
University Press.

Scott, D. (1974) Completeness and axiomatizability in many valued logics. Proceedings of Tarski
Symposium, American Mathematical Society, Providence, Rhode Island, 411-36.

Tarski, A. (1956) On the concept of logical consequence, in Polish (1936). Translation in Logic
Semantics Metamathematics. Oxford: Oxford University Press.

Vermeir, D. and Laenens, E. (1990) An overview of ordered logic in Abstracts of the Third Logical
Biennial. Bulgaria: Varga.

Vigano, L. (1999) Labelled Non-classical Logics. Dordrecht: Kluwer.

Walton, D. (1990) Practical Reasoning. New York: Rowman and Littlefield.

Woods, J. (1988) Are fallacies theoretical entities? Informal Logic, 10, 67-76.

Woods, J. and Walton, D. (1989) Fallacies: Selected Papers, 1972—1982. Dordrecht: Kluwer.

769

