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Modern Logic and its Role in the 
Study of Knowledge

P E T E R A .  F L AC H

Knowledge is at the heart of intelligent behavior. The ability to obtain, manipulate, and
communicate knowledge, in explicit form, is what distinguishes humans from other
animals. This suggests that any study of intelligent behavior, theoretical or experi-
mental, would have the same starting point, namely a Science of Knowledge, which
studies the basic forms of knowledge, its acquisition, and its processing.

Yet there does not seem to exist such a unified and mutually agreed science of knowl-
edge. In ancient times philosophy, the ‘love of knowledge,’ would aim to fulfill this role
of the Mother of all Sciences, but philosophy has since long lost its central place and
has mostly fragmented into specialized sciences such as physics, biology, and mathe-
matics. Computer science, a relatively young branch on the tree of knowledge, has some
aspirations to be the science of knowledge, but is currently at best a loosely connected
collection of engineering technologies and abstract mathematical theory. (In fact,
scholars of more established disciplines such as physics or chemistry often hesitate to
call computer science a science at all, because its design-oriented approach does not fit
in well with the doctrines of experimental sciences.) Artificial intelligence – the disci-
pline studying fruitful connections between intelligent behavior and computers – would
be another contender, but has been accused of overstating its claims, having unclear
goals, and applying sloppy methodology. 

In this chapter I argue that logic, in its widest sense, is – or at least, should be per-
ceived as – the science of knowledge. This would be an unsurprising statement for a
nineteenth-century logician, who would study the kind of inductive reasoning involved
in experimental sciences as eagerly as he would investigate the kind of reasoning that
is employed in mathematical proofs. However, in the last century logic seems to have
developed into a relatively specialized and not seldomly obscure branch of mathe-
matics. This is all the more paradoxical since the first half of the twentieth century has
often been called ‘the Golden Age of logic.’ Following the pioneering work of Gottlob
Frege, who developed a forerunner of predicate logic called Begriffsschrift (‘concept 
language’) in 1893, Russell and Whitehead published their three-volume Principia
Mathematica between 1910 and 1913, in which they re-established the foundations of
pure mathematics in logical terms. Whereas Kurt Gödel dealt a severe blow to the ambi-
tions of logicians when he demonstrated that any logical system powerful enough to
include natural numbers is also necessarily incomplete (i.e. the logical system allows



the formulation of true statements which are demonstrably unprovable within the
system), this didn’t stop logicians like Alonzo Church to develop ever more powerful
logical systems (e.g. combinator logic and higher-order logic). Furthermore, Alfred
Tarski invented what I consider one of the most important contributions of modern
logic, namely the notion of an independent semantics. 

1 The Key Ingredients of Logic

The duality between syntax and semantics is not only central in logic, it is also ubiqui-
tous in linguistics and computer science. Syntax deals with the structure of a logical
or linguistic expression in terms of its constituent symbols; semantics deals with 
mappings to objects capturing the meaning of expressions. Both are essentially about
relationships between expressions, rather than about individual expressions. For
instance, certain syntactic logical transformations produce new expressions from 
given ones by, for example, renaming or unifying variables. Semantics tells us under 
which conditions the syntactically modified expressions are equivalent to the original 
ones. Syntactic transformations can be chained together to form derivations, chains of
expressions each of which is obtained from the previous one by one of the possible
transformations. Semantics, on the other hand, is mostly concerned with the relation
between the initial and final expressions. Syntax is more concerned with how to
compute the final expression from the initial one, while semantics is more concerned
with what the relation between them is. This what–how duality permeates all of com-
puter science: from specification-design, via grammar-parser, to declarative-imperative
programming. 

A semantic relation with particular significance in mathematics and computer pro-
gramming is the relation of logical equivalence, requiring that under no circumstance
should a syntactic operation remove or add meaning. For instance, logically equivalent
statements of a theorem (such as ‘there exists no largest prime number’ and ‘there are
infinitely many primes’) are essentially seen as one and the same theorem. A related
notion, and in fact far more useful, is the notion of entailment or logical implication. Two
expressions are logically equivalent if, and only if, each entails the other. Many syntac-
tic transformations produce weaker expressions that are entailed by, but not logically
equivalent with, the original expression. For instance, we can specialize the expression
‘there exists no largest prime number’ to ‘4,220,851 is not the largest prime number.’
Syntactic transformations which specialize expressions into weaker entailed expres-
sions are called sound transformations. It may seem wasteful to throw away knowledge
in this way, but logicians are often interested in complete sets of syntactic trans-
formations which, when applied in every possible way, generate all possible implied
expressions. 

Soundness and completeness constitute the canon of mathematical logic. They
allow us to reformulate mathematical knowledge into more manageable specializations
about the particular topic we are interested in. They also allow us to combine several
pieces of knowledge: for instance, from ‘4,220,851 is not the largest prime number’
and ‘4,220,851 is a prime number’ we can infer ‘4,220,851 is not the largest natural
number.’ Sound and complete transformations, or inference rules as they are often called,
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are also central in many areas of computer science, for instance when we want to prove
that a particular computer program meets its specification. In all these cases the 
starting point (the mathematical axioms, the grammar, or the program specification) 
is already, in an abstract sense, complete. If a mathematical theorem embodies 
knowledge that was not already present in the axioms we started from, the theorem is
simply wrong. In mathematics the only allowed form of reasoning is sound reasoning
or deduction. 

2 Non-Deductive Reasoning Forms

In experimental sciences, and indeed in everyday life, the overwhelming majority of
inferences is not deductive. Any physical theory that is to be of any use is expected to
generalize the observations, in the sense that it makes predictions about as yet unob-
served phenomena. If inference of such a theory from observations were required to
be sound, no such predictions would be possible. Similarly, if our observations are insuf-
ficient to warrant a certain conclusion, we are usually happy to make educated guesses
about the missing knowledge, even if this renders our inference, strictly speaking,
unsound. The good news about giving up soundness is that our inferences may become
much more useful; the bad news is that they may turn out to be wrong. 

The fact that in science and everyday life non-deductive reasoning is ubiquitous 
suggests that we humans are relatively successful in avoiding most of the pitfalls of
unsound reasoning, and that our non-deductive inferences are none the less correct
most of the time. It follows that unsound reasoning comes in kinds – for instance, there
is a trivial distinction between incorrect reasoning (such as inferring that all swans are
black after observing 10 white swans) from unsound but potentially correct reasoning
(such as inferring that all swans are white from the same observations). More inter-
estingly, we would expect there to be different forms of unsound reasoning: one to deal
with missing premises, one to propose a theory generalizing given observations, one for
performing what-if analysis, one to explain observed behavior of a particular object,
and so on. We would also expect to have some way to assess the reliability of an
unsound inference, expressed in terms of, for example, the predictions it makes, the
explanations it provides, the assumptions it requires, and the observations on which it
was based. 

There is a plethora of interesting research questions to explore. Which different
kinds of unsound reasoning can be meaningfully distinguished? How different is each
of them from deduction? Can we draw up a list of necessary and sufficient conditions
for any kind of reasoning to be called deductive? Can we remove conditions from this
list, and still obtain sensible but unsound forms of reasoning? Are soundness and com-
pleteness relative notions, for example does it make sense to talk about inductive sound-
ness as distinct from deductive soundness? All these are issues one would expect to be
central on most logicians’ agendas. Yet, they seem to have fallen off during the ‘Golden
Age’: 

The central process of reasoning studied by modern logicians is the accumulative deduc-
tion, usually explained semantically, as taking us from truths to further truths. But 



actually, this emphasis is the result of a historical contraction of the agenda for the field.
Up to the 1930s, many logic textbooks still treated deduction, induction, confirmation, and
various further forms of reasoning in a broader sense as part of the logical core curricu-
lum. And moving back to the 19th century, authors like Mill or Peirce included various
non-deductive modes of reasoning (induction, abduction) on a par with material that 
we would recognize at once as ‘modern’ concerns. Since these non-deductive styles of
reasoning seemed irrelevant to foundational research in mathematics, they moved out
quietly in the Golden Age of mathematical logic. But they do remain central to a logical
understanding of ordinary human cognition. These days, this older broader agenda 
is coming back to life, mostly under the influence of Artificial Intelligence, but now
pursued by more sophisticated techniques – made available, incidentally, by advances in
mathematical logic. (van Benthem 2000) 

To be sure: I am not arguing that logicians stopped investigating the research issues 
I indicated above – on the contrary, there have been many exciting developments
regarding these questions, some of which will be covered in this chapter. However, they
do seem to have disappeared from the main logical agenda. I believe it is important to
revive the broader logical agenda, on which mathematical logic is an important
subtopic but not the only one. If anything, such a broader agenda would stimulate
cross-fertilization among subtopics, something which happens too seldom nowadays: 

Some members of the traditional logic community are still very conservative in the sense
that they have not even accepted non-monotonic reasoning systems as logics yet. They
believe that all this excitement is transient, temporarily generated by computer science 
and that it will fizzle out sooner or later. They believe that we will soon be back to the 
old research problems, such as how many non-isomorphic models does a theory have in
some inaccessible cardinal or what is the ordinal of yet another subsystem of analysis. I
think this is fine for mathematical logic but not for the logic of human reasoning. There is
no conflict here between the new and the old, just further evolution of the subject.
(Gabbay 1994: 368, note 7)

In the remainder of this chapter I will be considering the following fundamental ques-
tion: which are the main forms of reasoning that make up the logical agenda, and what
are their key characteristics? Informally, reasoning is the process of forming arguments,
that is drawing conclusions from premises. By fixing the relation between premises and
acceptable conclusions we can obtain various reasoning forms. For instance, an argu-
ment is deductive if the conclusion cannot be contradicted (or defeated) by new knowl-
edge without contradicting the premises also; a form of reasoning is deductive if it only
allows deductive arguments. We also say that deductive reasoning is non-defeasible. A
logical system, or logic for short, is a particular formalization of a reasoning form. There
may exist several logics formalizing a particular reasoning form; for instance, there is
a range of deductive logics, such as modal, temporal, relevance, and intuitionistic
logics, each formalizing certain aspects of deductive reasoning. These deductive logics
do not necessarily agree on which arguments are deductively valid and which are not.
For example, the argument ‘two plus two equals four; therefore, if the moon is made of
green cheese, then two plus two equals four’ will be rejected by those who favor a causal
or relevance interpretation of if–then rather than a truth-functional interpretation.
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However, as soon as such an argument is accepted as deductively valid, the only way
to defeat the conclusion is by denying that two plus two equals four, and this defeats
the premises also. 

Non-deductive reasoning forms, on the other hand, are defeasible: a conclusion may
be defeated by new knowledge, even if the premises on which the conclusion was based
are not defeated. For instance, the argument ‘birds typically fly; Tweety is a bird; there-
fore, Tweety flies’ is non-deductive, since Tweety might be an ostrich, hence non-
typical. The argument ‘every day during my life the sun rose; I don’t know of any
trustworthy report of the sun not rising one day in the past; therefore, the sun will rise
every future day’ is non-deductive, since if the sun would not rise tomorrow, this would
invalidate the conclusion but not the premises. The Tweety-argument is a well-known
example of what I call plausible reasoning: reasoning with general cases and exceptions.
An important observation is that plausible reasoning encompasses deductive reason-
ing: if we know that Tweety is a typical bird, the argument will be deductively valid. In
this sense plausible reasoning is ‘supra-deductive’ or, as I will call it, quasi-deductive.
Another example of quasi-deductive reasoning is so-called counterfactual reasoning, or
‘what-if ’ analysis, starting from premises known to be false. For instance, the argument
‘if you hadn’t called me this morning, I would surely have missed my train’ is a coun-
terfactual argument, as both premise and conclusion are false in the intended inter-
pretation. The point of such an argument is to investigate what would change if certain
circumstances in the world had been different. 

Other reasoning forms do not aim at approximating deduction, hence do not include
deduction as a special case. I will call such reasoning forms a-deductive. The sunrise
argument is an example of induction, an a-deductive reasoning form aimed at general-
izing specific observations (also called evidence) into general rules or hypotheses. Note
that I do not yet claim to have defined plausible or inductive reasoning in any way. Like
with all forms of reasoning, this requires a formal definition of the consequence rela-
tion between premises and acceptable conclusions, analogous to deductive entailment.
(The general term I will use for such a relation is consequence: thus, we will speak about
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Figure 42.1 A classification of reasoning forms 
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‘inductive consequence’ or ‘plausible consequence,’ and avoid potentially confusing
terms like ‘inductive validity’ or ‘plausible soundness’). 

Another form of a-deductive reasoning is abduction, a term originally introduced 
by C. S. Peirce to denote the process of forming an explanatory hypothesis given some
observations (a hypothesis from which the observations can be deduced). For instance,
the argument ‘All the beans from this bag are white; these beans are white; therefore,
these beans are from this bag’ is an abductive argument. In recent years, abduction 
has become popular in the logic programming field, where it denotes a form of
reasoning where the general explanation is known, but one of its premises is not 
known to be true; abduction is then seen as hypothesizing this missing premise. As 
a consequence, abduction and induction are viewed as complementary: induction
infers the general rule, given that its premises and its conclusion hold in specific cases;
abduction infers specific premises, given the general rule, and specific instances of
its conclusion and some of its premises. Also, there are strong links between abduction
and plausible reasoning: abduction can answer the question ‘what do I need to assume
about the bird Tweety if I want to infer that it flies’ (answer: that it is a typical bird). 
I will expand on some of these issues below – the reader interested in finding out 
more about the relation between abduction and induction is referred to (Flach and
Kakas 2000a). 

The classification of reasoning forms I am advocating is depicted in Figure 42.1.
While the justification for some of the distinctions made here have been admittedly
sketchy, they will be elaborated in the rest of the chapter. The reader should also be
aware that this classification should be taken as a starting point and is not intended to
be set in stone. The main point is that on the map of logic, deduction occupies but a
small part. I will now proceed to discuss some of these reasoning forms in more detail. 

3 Plausible Reasoning

I should start by stressing that the term ‘plausible reasoning’ is not generally accepted
– reasoning with exceptions is normally referred to as non-monotonic reasoning.
Monotonicity is a technical term denoting that the set of conclusions grows (monoton-
ically) with the set of premises. In other words, addition of a premise to a given 
argument never invalidates the conclusion – the same property as what I called non-
defeasibility above. Since any non-deductive reasoning form is defeasible, it follows that
any non-deductive reasoning form is non-monotonic. Thus, the property of non-
monotonicity is of limited use in singling out a particular non-deductive reasoning
form; for this reason I prefer a different (and more meaningful) term for reasoning with
general rules and exceptions. (Default reasoning would be a good term, but this seems
too strongly connected to a particular logic, i.e. default logic.)

Plausible reasoning is the process of ‘tentatively inferring from given information
rather more than is deductively implied’ (Makinson 1994). It can thus be said to be
more liberal or more credulous than deductive reasoning. Correspondingly, the set of
arguments accepted by a plausible reasoning agent (also called a consequence relation,
and defined as a subset of L ¥ L, where L is the language) can be divided into a deduc-
tive part and a plausible part. The deductive part corresponds to arguments not 
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involving any rules which have exceptions. (Alternatively, one can deductively extend
a set of plausible arguments by treating all exceptions to rules as inconsistencies from
which everything could be inferred, although this would be rather less interesting.) 

The non-monotonicy of plausible reasoning can be demonstrated as follows: from
bird one would infer flies, but from bird and penguin one wouldn’t infer flies. That is, the
rule if bird then flies is a default rule which tolerates exceptions, and the formula bird and
not flies is not treated as an unsatisfiable formula from which anything can be inferred.
The question then arises as to what other properties of deductive reasoning, besides
monotonicity, are affected by allowing exceptions to rules. This is the main question
addressed in a seminal paper by Kraus et al. (1990). In general, propositional deduc-
tive reasoning can be characterized by the following rules: 

Reflexivity: a |~ a for all a;
Monotonicity: if a |~ b and g |= a, then g |~ b;
Right Weakening: if a |~ b and b |= g, then a |~ g;
Cut: if a |~ b and aŸb |~ g, then a |~ g;
Left Or: if a |~ g and b |~ g, then a⁄b |~ g.

In these rules, a |~ b indicates that the reasoner in question accepts the inference from
a to b, possibly with respect to an implicit body of background knowledge. |=, on the
other hand, stands for classical deductive consequence (with respect to the same back-
ground knowledge). These rules can be combined: for instance, Reflexivity and Right
Weakening together imply that a |~ g whenever a |= g, that is the consequence relation
|~ is supra-classical. 

Kraus et al. prove that the above five rules characterize deductive reasoning. Notice
that equivalent rule sets exist: for instance, Cut could be replaced by Right And, and
Left Or could be replaced by Right Implication: 

Right And: if a |~ b and a |~ g, then a |~ bŸg;
Right Implication: if aŸb |~ g, then a |~ bÆg.

Furthermore, they study the kinds of reasoning that result from weakening some of
these rules. One variant they consider is obtained by replacing Monotonicity with the
following two rules: 

Left Logical Equivalence: if a |~ b and |=a´g, then g |~ b;
Cautious Monotonicity: if a |~ b and a |~ g, then aŸb |~ g.

Both rules are clearly entailed by Monotonicity – Cautious Monotonicity, in particular,
states that premises can be strengthened with their plausible consequences. This kind
of plausible reasoning is called preferential reasoning, because it can be semantically
modeled by assuming a (partial) preference order between states, where a state is a set
of models, and stipulating that a |~ b if and only if every most preferred state satisfying
a also satisfies b (a state satisfies a formula iff all its models satisfy the formula).
Preferential reasoning can be further weakened by dropping the condition that the 
preference relation between states be a partial order; this invalidates Left Or but none
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of the other rules. This kind of reasoning is called cumulative reasoning because Cut
and Cautious Monotonicity together imply that if a |~ b, then a |~ g if and only if aŸb
|~ g, that is plausible consequences can be accumulated in the premises. 

From the foregoing it follows that deductive reasoners are preferential (with empty
preference relation), and preferential reasoners are cumulative. However, a more mean-
ingful comparison between reasoning forms X and Y would be obtained if we could
establish, for each X-reasoner, a unique maximal subset of arguments that satisfy the
rules of Y. Such a reduction from preferential to deductive reasoning was given in (Flach
1998). Basically, it involves using Monotonicity in the opposite direction (if g |= a and
g �/ b, then a �/ b) to remove arguments that are not deductively justified. Semantically,
this amounts to ignoring the preference relation. (As stated before, we can also use
Monotonicity in the forward direction to turn all plausible arguments into deductive
ones, amounting to removing all states that satisfy exceptions to rules; however, this
would rather endorse the less natural view that plausible reasoning is the process of
inferring less than deductively implied.) 

There is an interesting analogy between non-monotonic reasoning and non-
Euclidean geometry. For many centuries it was assumed that Euclid’s fifth axiom 
(parallel lines don’t intersect) was self-evident, and that denying it would lead to incon-
sistencies. However, non-Euclidean geometry was proved to be consistent in the early
nineteenth century. Similarly, many logicians argued that logic was necessarily mono-
tonic, and that the concept of a non-monotonic logic was a contradiction in terms.
However, there is a difference between monotonicity as a property of mathematical rea-
soning, and monotonicity of the logic under study. Kraus et al. used the deductive meta-
logic of consequence relations to formalize various forms of non-deductive reasoning.
Rules such as Cautious Monotonicity are in fact rationality postulates that need to be
satisfied by any rational reasoning agent of the class under study. This is a crucial
insight, and their approach establishes a methodology that can be applied to analyze
other forms of reasoning as well. This will be explored in the next section. 

4 Induction and Abduction

Induction is the process of generalizing specific evidence into general rules. A simple
form of induction is the following sample-to-population inference: 

X percent of observed Fs are Gs;
therefore, (approximately) X percent of all Fs are Gs. 

This argument schema has a categorical counterpart: 

All of observed Fs are Gs;
therefore, all Fs are Gs. 

or – since the induced rule need not be a material implication –

All objects in the sample satisfy P(x);
therefore, all objects in the population satisfy P(x). 
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These formulations of inductive generalization, however, obscure a crucial issue: nor-
mally, the predicate P to be used in the general rule is not explicitly given in the obser-
vations. Rather, the key step in induction is to distill, out of all the available information
about the sample, the property that is common to all objects in the sample and that will
generalize reliably to the population. I will refer to this step as hypothesis generation. 

Hypothesis generation is an often ignored step in philosophy of science. For instance,
in Conjectures and Refutations Popper describes at length how to test a conjecture, but
remains silent about how to come up with a conjecture in the first place. To refer to ill-
understood phenomena such as creativity in this context is to define the problem away.
Moreover, if we want to automate scientific discovery or learning (object of study in the
subfield of artificial intelligence called machine learning), we have to approach hypoth-
esis generation in a principled way. Hypothesis generation is not a wholly irrational
process, and the question thus becomes: what are the rationality postulates governing
inductive hypothesis generation? 

In fact, this question was already considered by the American philosopher Charles
Sanders Peirce, who wrote in 1903: 

Long before I first classed abduction as an inference it was recognized by logicians that the
operation of adopting an explanatory hypothesis – which is just what abduction is – was
subject to certain conditions. Namely, the hypothesis cannot be admitted, even as a hypoth-
esis, unless it be supposed that it would account for the facts or some of them. The form of
inference, therefore, is this:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.

Thus, A cannot be abductively inferred, or if you prefer the expression, cannot be abduc-
tively conjectured until its entire content is already present in the premiss, “If A were true,
C would be a matter of course.” (Peirce 1958: 5.188–9)

Here, Peirce calls the process of explanatory hypothesis generation abduction (while he
uses the less tentative phrase “adopting an explanatory hypothesis” above, elsewhere
(5.171) he defines abduction as “the process of forming an explanatory hypothesis,”
i.e. “abduction merely suggests that something may be”). 

Nowadays people use the term ‘abduction’ in various senses (even Peirce had ini-
tially a different, syllogistic view of abduction), so a brief digression on these issues may
be in order – the interested reader is referred to (Flach and Kakas 2000b) for a more
extensive discussion. In philosophy, it is customary to view abduction as ‘reasoning to
the best explanation’ (Lipton 1991). This, however, combines hypothesis generation
with hypothesis selection, only the former being a purely logical process amenable to
logical analysis. In artificial intelligence, abduction is usually perceived as reasoning
from effects to causes, or from observations to explanations: here, an abductive hypoth-
esis is not a general rule or theory, as in induction, but rather a specific explanation or
cause relating to the observed individual. Thus, abductive hypotheses explain but do
not generalize. Induction, on the other hand, aims at generalizing beyond the observed
individuals. While in inductive argument schemas such as the above the induced
hypotheses entails the observations, this is not an explanation in the same sense as a
cause explains an effect. 
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In general, we cannot distinguish between abductive explanations and inductive
generalisations by methods based on entailment alone, including the method I am
about to describe. However, the view of induction as generalization does suggest an
alternative formalization which is closer to both confirmation theory (in the qualitative
sense of Hempel) and Kraus et al.’s (1990) account of plausible reasoning. In the
remainder of this section I will discuss rationality postulates for explanatory reason-
ing, including abduction and explanatory induction, and then present alternative pos-
tulates for confirmatory induction in the next section. 

Returning to Peirce, the logical form of abductive hypothesis generation he sug-
gested can be simplified to ‘from C, and A |= C, abduce A’ or, introducing the symbol |<
for abductive inference, ‘if A |= C, then C |< A’. We can now use Kraus et al.’s (1990)
consequence relation methodology to formulate rationality postulates for hypothesis
generation. We start with some general principles:

Verification: if a |< b and aŸb |= g, then aŸg |< b;
Falsification: if a |< b and aŸb |= g, then aŸÿg |</ b.

Verification and Falsification state that if b is a possible hypothesis given observations
a, and g is a prediction on the basis of b (and a), then b is not ruled out by observing
that g is true, but falsified by observing that g is false. (While the names of these rules
have been inspired by the debate between the logical positivists and Popper, it should
be stressed that – under my interpretation of a |< b as ‘b is a possible hypothesis given
evidence a’ – Verification is a fairly weak rule to which one can hardly object.) 

Falsification is different from the rules we have seen until now, because it draws 
negative conclusions about the consequence relation |<. This means that some of Kraus
et al.’s (1990) rules need to be adapted when formulated in our framework. For
instance, the following set of ‘explanatory’ rules is obtained by rewriting the rules given
in Section 3 for deduction, substituting b |< a for a |~ b (we use the variant with Right
And and Right Implication): 

Reflexivity: a |< a for all a;
Right Strengthening: if b |< g and a |= g, then b k a;
Left Weakening: if b |< a and b |= g, then g |< a;
Left And: if b |< a and g |< a, then bŸg |< a;
Left Implication: if g |< aŸb, then bÆg |< a.

The last three rules make immediate sense for explanatory hypothesis generation. In
particular, Left Weakening states that the set of explanations decreases monotonically
when the observations increase; it is a convergence property for induction (it can be
combined with Verification into a single rule). Left And states that if a is a possible
hypothesis explaining b and g observed separately, it also explains b and g observed
together; this enables incremental induction. Left Implication deals with background
knowledge: if b is a necessary part of the explanation of g, then it can also be added as
a condition to the observation. 

On the other hand, the first two rules contradict Falsification and need to be weak-
ened by adding an admissibility requirement on a (for instance, that a explains some-
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thing – e.g. itself). Without going into details, we mention that the following set of rules
has been demonstrated to characterize consistent explanatory reasoning: 

Explanatory Reflexivity: if b |< b and ÿa |</ b, then a |< a;
Admissible Right Strengthening: if b |< g, a |< a and a |= g, then b |< a;
Predictive Left Weakening: if b |< a and aŸb |= g, then g |< a;
Left And: if b |< a and g |< a, then bŸg |< a;
Left Implication: if g k aŸb, then bÆg |< a;
Left Consistency: if a |< b then ÿa |</ b.

While some of these postulates may be debatable (for instance, one may argue that
explanatory reasoning is inherently irreflexive), they do provide a starting point for
studying various forms of explanatory reasoning. Instead of a single ‘logic of induc-
tion’, I have proposed a modular system of meta-level rationality postulates that can be
adapted to model various forms of reasoning. In addition, one can study semantic char-
acterizations of these postulates. The interested reader is referred to (Flach 2000a,
2000b). 

5 Confirmatory Induction

The preceding set of postulates concentrated on induction and abduction as explana-
tory reasoning. There is an alternative view of induction as inferring hypotheses that
are confirmed by the observations. This view was pioneered by Carl G. Hempel, who pro-
posed both a set of rationality postulates (or, as he called them, adequacy conditions)
and a material definition of confirmation. The following is a list of Hempel’s adequacy
conditions (Hempel, 1945: 103–6, 110), reformulated in our meta-language: 

Entailment: if a |= b, then a |< b;
Right Weakening: if a |< b and b |= g, then a |< g;
Right And: if a |< b and a |< g, then a |< bŸg;
Consistency: if a |< b and a |=/ ÿa, then a |=/ ÿb;
Left Logical Equivalence: if a |< b and |=a´g, then g |< b;

For instance, the first condition states that entailment ‘might be referred to as the
special case of conclusive confirmation’ (Hempel 1945: 107). Each of these postulates
is reasonable, except perhaps Right And which seems unjustified if the evidence is too
weak to rule out incompatible hypotheses – in other words, it expresses a completeness
assumption regarding the observations. 

The main reason for Hempel to formulate his adequacy conditions was to verify his
material definition of confirmation against them – consequently, there is no guarantee
that they are complete in any sense. The following set of rationality postulates for con-
firmatory induction can be shown to be complete with respect to a suitably devised
semantics:

Confirmatory Reflexivity: if b |< b and b |</ ÿa, then a k a;
Predictive Right Weakening: if a |< b and aŸb |= g, then a |< g;
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Right And: if a |< b and a |< g, then a |< bŸg;
Right Consistency: if a |< b then a |</ ÿb;
Left Logical Equivalence: if a |< b and |=a´g, then g |< b;
Strong Verification: if a |< b and a |< g, then aŸg |< b;
Left Or: if a |< g and b |< g, then a⁄b |< g.

As before, I disallow contradictory observations (unlike Hempel) – a weaker form of
Entailment follows from Predictive Right Weakening, and a weak form of Reflexivity
has been added as a separate rule (notice that Reflexivity was implied by Hempel’s rules
as an instance of Entailment). Two new rules have been added. Whereas Verification
states that predictions g can be added to confirming observations a for hypothesis b,
Strong Verification states that this can also be done whenever g is confirmed by a. As
with Right And, the underlying assumption is that the observations are complete
enough to have all confirmations ‘point in the same direction.’ Left Or can be seen as a
variant of Left Weakening, discussed in the context of explanatory reasoning. While
Left Weakening is clearly invalid in the confirmatory case (if we weaken the observa-
tions, there will presumably come a point where they cease to confirm the hypothesis),
Left Or states that separate observations confirming a hypothesis can be weakened by
taking their disjunction. 

The semantics against which these postulates are provably complete is a variant of
Kraus et al.’s (1990) preferential semantics for plausible reasoning. In fact, the postu-
lates for confirmatory induction are closely related to postulates considered in Section
3: for instance, Strong Verification is identical with Cautious Monotonicity. This is
perhaps surprising at first sight, but can be explained by noting that plausible and con-
firmatory reasoning make similar assumptions in order to go beyond deduction: while
in plausible reasoning one commonly assumes that anything which is not known to be
an exception conforms to the rule, in induction one assumes that unknown objects
behave similarly to known objects. 

We end this section on a philosophical note. Hempel’s name is associated with a
number of paradoxes, one of which is the confirmation paradox. This paradox arises
when one considers to add a variant of Right Strengthening to the postulates for con-
firmatory induction. To borrow Hempel’s example: 

Is it not true, for example, that those experimental findings which confirm Galileo’s law, or
Kepler’s laws, are considered also as confirmation Newton’s law of gravitation?’ (Hempel
1945: 104)

The problem is that the combination of Right Weakening and Right Strengthening
immediately leads to a collapse of the system, since arbitrary observations now confirm
arbitrary hypotheses. However, Hempel confuses confirmation with explanation here.
Explanatory hypotheses can be arbitrarily strengthened (as long as they remain con-
sistent with the observations), but not necessarily weakened; confirmed hypo-
theses can be arbitrarly weakened, but only strengthened under certain conditions. It 
might be possible to formalize a form of hypothesis generation where hypotheses 
both explain and are confirmed by the observations (this is an open problem), but 
then there would be strong conditions on both strengthening and weakening of the
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hypothesis. Distinguishing between explanatory and confirmatory induction solves the
confirmation paradox. 

6 Concluding Remarks

This short chapter has been written as a re-appraisal of logic as the science of knowl-
edge. The goal of logic is to provide a catalogue of reasoning forms. Deduction is but
one of the possible forms of reasoning, easiest to formalize but with limited importance
for intelligence. It is possible to characterize non-deductive or defeasible reasoning
forms mathematically, by concentrating on their purely logical part, viz. hypothesis gen-
eration. I have suggested that such characterization is best performed on the meta-level,
stating postulates that circumscribe rational behavior of reasoning agents. Possible
rationality postulates for plausible, explanatory, and confirmatory reasoning have been
discussed at some length. 

A final word on the issue of hypothesis selection, which is the equally crucial but
complementary step in intelligent reasoning. In my view, the process of evaluating pos-
sible hypotheses to determine which one(s) will be actually adopted is an extra-logical
one. By this I mean that it does not give rise to a proof theory in any interesting sense.
Furthermore, any hypothesis evaluation procedure will be construed from measures of
probability, interestingness, or information content. Logic deals with possible conclu-
sions, not actual ones. This is even true for deduction, which only characterizes tau-
tologies, not interesting mathematical theorems. My conjecture is that successful
evaluation procedures (e.g. based on Bayesian or subjective probabilities) will be applic-
able across a range of different reasoning forms. Thus, while hypothesis generation dis-
tinguishes reasoning forms, hypothesis evaluation unifies them. 
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