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Many-Valued Logic

GRZEGORZ MALINOWSKI

1 When is a Logic Many-Valued?

The most natural and straightforward step towards the construction of a many-valued
logic is to introduce logical values next to truth and falsity. Thereby, one has to reject
the principle of bivalence, that every proposition has exactly one of the two logical
values. Another, indirect way consists in challenging the classical laws concerning the
sentence connectives and introducing non-truth-functional connectives into the lan-
guage, among them the modal connectives of possibility and necessity. In either case
the semantics adequate is different from the classical, that is Boolean, thus the logic
under consideration is non-classical.

2 Roots, Motivations, and Early History

The roots of many-valued logics can be traced back to Aristotle (fourth century BC) who
considered, within the modal framework, future contingents sentences. In Chapter IX of
De Interpretatione Aristotle provides the time-honored sentence-example representing
this category: ‘There will be a sea-battle tomorrow.’ The Philosopher from Stagira
emphasizes the fact that future contingents are neither actually true nor actually false,
which suggests the existence of the ‘third’ logical status of propositions.

The prehistory of many-valued logic falls on the Middle Ages. More serious attempts
to create non-classical logical constructions, three-valued mainly, appeared only on 
the turn of the nineteenth century. The evaluation to what extent these different
approaches by Duns Scott, William Ockham, Peter de Rivo and Hugh MacColl, Charles
S. Peirce, Nicolai A.Vasil’ev were important for the topic is not easy. In most cases the
division of the totality of propositions into three categories was supported by some con-
siderations dealing with some modal or temporal concepts. Eventually, some criteria of
the distinction were applied and the propositions mostly were grouped as either ‘affir-
mative,’ ‘negative,’ or ‘indifferent.’

Philosophical motivations for logical many-valuedness may roughly be classified 
as ontological and epistemic. First of them focus on the nature of objects and facts, 
while the others refer the knowledge status of actual propositions. The ‘Era of many-



valuedness’ was finally inaugurated in 1920 by Ĺukasiewicz (1920) and Post (1920).
The thoroughly successful formulations of many-valued logical constructions were
possible in the result of an adaptation of the truth table method applied to the classi-
cal logic by Frege in 1879, Peirce in 1885 and others. The impetus thus given bore the
Ĺukasiewicz and Post method of logical algebras and matrices. Apparently different pro-
posals of the two scholars had quite different supports.

3 Ĺukasiewicz Three-Valuedness

Though 1920 is the year of publication of Ĺukasiewicz’s article in an official journal
Ruch Filozoficzny his finding was published as soon as March 7, 1918. In that paper
Ĺukasiewicz enriched the set of the classical logical values 0 and 1 with an intermedi-
ate value 1/2 and laid down the principles of his calculus referring to Aristotle’s argu-
ment. His future contingent proposition read “I shall be in Warsaw at noon on 21
December of the next year.”

First Ĺukasiewicz’s interpretation of the third logical value 1/2 was as a ‘possibility’
or ‘indeterminacy.’ Accordingly, the interpretation of negation and implication has
been extended in the following tables:
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x ÿx Æ 0 1/2 1

0 1 0 1 1 1
1/2 1/2 1/2 1/2 1 1
1 0 1 0 1/2 1

(the truth tables of binary connectives * are viewed as follows: the value of a is placed
in the first vertical line, the value of b in the first horizontal line and the value of a * b
at the intersection of the two lines).

The remaining standard connectives introduced through definitions

a ⁄ b = (a Æ b) Æ b
a Ÿ b = ÿ (ÿa ⁄ ÿb) 
a ∫ b = (aÆb) Ÿ (b Æ a).

have the tables:

⁄ 0 1/2 1 Ÿ 0 1/2 1 ∫ 0 1/2 1

0 0 1/2 1 0 0 0 0 0 1 1/2 0
1/2 1/2 1/2 1 1/2 0 1/2 1/2 1/2 1/2 1 1/2
1 1 1 1 1 0 1/2 1 1 0 1/2 1

A valuation of formulas in Ĺukasiewicz three-valued logic is any function v: For Æ
{0,1/2, 1} of the set of all formulas For compatible with the above tables. A tautology
is a formula which under any valuation v takes on the designated value 1.



The set Ĺ3 of tautologies of three-valued logic of Ĺukasiewicz differs from TAUT. So,
for instance, neither the law of the excluded middle, nor the principle of contradiction
is in Ĺ3. To see this, it suffices to assign 1/2 for p: any such valuation also associates 1/2
with EM and CP. The thorough-going refutation of these two laws was intended to
codify the principles of indeterminism.

Another property of new semantics is that some classically inconsistent formulas
are no more contradictory in Ĺ3. One such formula:

(*) p ∫ ÿp,

is connected with the famous Russell paradox of the ‘set of all sets that are not their
own elements.’ Russell’s set is defined by the equation

Z = {x : x œ x}.

And the resulting paradox

Z Œ Z ∫ Z œ Z,

is a substitution of (*). Russell paradox ceases to be antinomy in Ĺ3 since putting 1/2
for p makes the formula true and therefore (*) is non-contradictory. Ĺukasiewicz found
it a strong argument in favor of his three-valued logic.

4 Post Logics

Post’s proposal was made on the margin of the completeness proof of the classical logic.
It consists in defining n-valued (n finite) ‘logic algebras’ saving the classical property of
functional completeness of the set of connectives (the property permits the definition
of all other possible connectives), cf. Post (1920, 1921).

Following Principia Mathematica Post takes the negation (ÿ) and disjunction 
(⁄) connectives as primitive. For any natural n ≥ 2 he considers a linearly ordered 
set

Pn = { t1, t2, . . . , tn},

tn < tj iff i < j, with two operations: unary rotation (or cyclic negation) ÿ and binary dis-
junction ⁄, where

ti+1 if i π n
ÿ ti = ti ⁄ tj = timax{i,j}

t1 if i = n

Thus, for example for n = 4 the truth tables of these connectives are the following:
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It is easy to see that for n = 2 Post logic coincides with the negation–disjunction version
of the classical logic: the set P2 = { t1, t2} may be identified as containing 0 and 1, respec-
tively, and then the Post negation and disjunction are isomorphic variants of the classi-
cal connectives on P2. The relation to CPC breaks for n > 2. In all these cases truth tables
of negation are not compatible with the classical one is due to the fact that t1 always cor-
responds to 0 and tn to 1. Though ÿ tn = t1, ÿ t1 equals t2 and thus then is not tn.

Post considers tn as the distinguished value. Among special laws of all its logics 
(n > 2) the following many-valued counterpart of the classical law of the excluded
middle

p ⁄ ÿ p ⁄ ÿ ÿ p ⁄ . . . ÿ ÿ . . . ÿ p.
(n-1) times

deserves attention. The absence of the counterparts of some other classical tautologies
follows directly from the properties of negation.

The most important property of Post algebras is their functional completeness: by
means of the two primitive functions, every finite-argument function on Pn can be
defined. In particular, then, the constant functions may also be defined and hence the
‘logical values’ t1, t2, . . . , tn.

Post suggests interpreting the elements of Pn as (n - 1)-element-tuples P = (p1, p2,
. . . , pn-1) of ordinary two-valued propositions p1, p2, . . . , pn-1 subject to the condition
that the true propositions are listed before the false. Then

(ÿ) ÿP if formed by replacing the first false element by its denial, otherwise it is a
sequence of false propositions.
(⁄) When P = (p1, p2, . . . , pn-1) and Q = (q1, q2, . . . , qn-1), then P ⁄ Q = (p1 ⁄ q1, 
p2 ⁄ q2, . . . , pn-1 ⁄ qn-1).

For n = 4 one gets the following 3-tuples:

( 0, 0, 0 ) t1

( 1, 0, 0 ) t2

( 1, 1, 0 ) t3

( 1, 1, 1 ) t4.

This interpretation shows that the values in different Post logics should be understood
differently.
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x ÿx ⁄ t1 t2 t3 t4

t1 t2 t1 t1 t2 t3 t4

t2 t3 t2 t2 t2 t3 t4

t3 t4 t3 t3 t3 t3 t4

t4 t1 t4 t4 t4 t4 t4



5 Ĺukasiewicz Logics

In 1922 LĹukasiewicz generalized his three-valued logic and defined the family of many-
valued logics, both finite and infinite-valued, see Ĺukasiewicz (1970: 140). The set of
logical values of n-valued logic for any natural n ≥ 2 is

Ln = {0, 1/(n-1), 2/(n-1), . . . , (n-2)/(n-1), 1}.

First infinite logic is based on the set of all fractions in the real interval [0,1],

LN0 = {s/w: 0 £ s £ w, s, w Œ N and w π 0}

and the second on the whole interval [0,1], LN 1 = [0,1]. In all these cases 1 is taken as
the only designated value and the connectives are defined as follows:

1. ÿx = 1 - x
x Æ y = min(1, 1 - x + y)

2. x ⁄ y = (x Æ y) Æ y = max(x, y)
x Ÿ y = ÿ(ÿx ⁄ ÿy) = min(x, y)
x ∫ y = (x Æ y) Ÿ (y Æ x) = 1 - |x - y|.

To give an idea of what truth tables of finite valued logics look like, we now show the
tables of negation and implication in the five-valued logic of Ĺukasiewicz:
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x ÿx Æ 0 1/4 2/4 3/4 1

0 1 0 1 1 1 1 1
1/4 3/4 1/4 3/4 1 1 1 1
2/4 2/4 2/4 2/4 3/4 1 1 1
3/4 1/4 1/4 1/4 2/4 3/4 1 1
1 0 1 0 1/4 2/4 3/4 1

Ĺukasiewicz matrices have this exceptional property that in all of them the set {0,1} is
closed with respect to all connectives. This together with the fact that the tables for all
usual connectives on this set coincide with the classical truth tables yields the fact that
the set of all tautologies of every Ĺukasiewicz logic, Tautn, is a subset of the set of tau-
tologies of the CPC which actually is Taut2. The inclusion

Tautn Õ Taut2

extends to the famous Lindenbaum’s condition on mutual relations in the family of
finite Ĺukasiewicz logic. Namely, that for any natural n, m (both ≥ 2)

Tautn Õ Tautm if and only if m - 1 is a divisor of n - 1 .



Infinite Ĺukasiewicz matrices have the same set of tautologies equal to the intersection
of the contents of all finite matrices: « { Tautn: n ≥ 2, n Œ N}.

Contrary to Post none of the Ĺukasiewicz logics Ĺn (n π 2) is functionally complete
since no constant function except 0 or 1 is definable. Adding all suitable constants to the
stock of connectives makes each finite logic complete. McNaughton (1951) formulated
and proved an ingenious definability criterion for Ĺukasiewicz matrices, both finite and
infinite, showing the mathematical beauty of Ĺukasiewicz’s logic constructions.

As early as 1931 Wajsberg gave an axiomatization of Ĺ3. Taking the rules MP and
SUB he established the four axioms

W1 p Æ (q Æ p)
W2 (p Æ q) Æ ((q Æ r) Æ (p Æ r))
W3 (ÿp Æ ÿq) Æ (q Æ p)
W4 ((p Æ ÿp) Æ p) Æ p.

Since the other Ĺukasiewicz connectives are definable, the axiomatizability result 
obviously applies to the whole Ĺ3. It is worth noting that W1–W4 was the first axiom
system of many-valued logics. Still earlier, in 1930, LĹukasiewicz conjectured that his
N0-valued logic was axiomatizable (Ĺukasiewicz and Tarski 1930) by five axioms: W1,
W2, and

L3 ((pÆq)Æq) ((qÆp)Æp)
L4 (ÿpÆÿq) (qÆp)
L5 ((pÆq) (qÆp)) (qÆp).

The response came only in 1958 with two works showing the dependence, and thus,
the eliminability of L5. In addition, two further completeness proofs, one syntactic and
the other algebraic, were derived see Rose and Rosser (1958) and Chang (1959).

6 Kleene and Bochvar Logics

In 1938 two similar, though independent, three-valued systems of logic were invented
by Kleene and Bochvar. The epistemic arguments behind their construction relate to
indeterminacy or to meaninglessness.

Kleene’s (1938) main assumption is that there are propositions whose logical truth
(t) or falsity (f ) is either undefined, undetermined by means of accessible algorithms, or
is not essential. The third value of undefiniteness (u) is reserved for this category of
propositions. Further to that the tables of the standard connectives save the classical
behavior towards t and f and looks like:
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a ÿa Æ f u t ⁄ f u t Ÿ f u t ∫ f u t

f t f t t t f f u t f f f f f t u f
u u u u u t u u u t u f u u u u u u
t f t f u t t t t t t f u t t f u t



Kleene’s logic has no tautologies. This, somewhat striking, feature follows from the fact
that any valuation which assigns u to every propositional variable also assigns u to any
formula.

In 1952, in his monograph Introduction to Metamathematics Kleene refers to the con-
nectives of his 1938 logic as strong and introduces another set of weak connectives:
retaining the negation and equivalence he defines the three others by the tables
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Æ f u t ⁄ f u t Ÿ f u t

f t u t f f u t f f u f
u u u u u u u u u u u u
t f u t t t u t t f u t

The novel truth tables are to describe the employment of logical connectives in 
respect of those arithmetical propositional functions whose decidability depends on the
effective recursive procedures. They are constituted according to the rule of saying 
that any single appearance of u results in the whole context taking u. The original 
arithmetic motivation states that indeterminacy occurring at any stage of compu-
tation makes the entire procedure undetermined. While the first Kleene logic was made
to render the analysis of partially defined propositional functions possible, the second
was inspired by the studies within the mathematical theory of recursion, see Kleene
(1952).

Bochvar’s (1938) approach is directed towards solving paradoxes emerging with the
classical logic and set theory based on it. The propositional language of Bochvar logic
has two levels corresponding to the object language and to metalanguage. They both
contain connectives being counterparts of negation, implication, disjunction, con-
junction, and equivalence. The internal connectives are conservative generalizations of
the classical ones, in the sequel they will be denoted similarly. The external connectives
are devised to characterize the relationship between logical values of propositions. Both
sets are initially described using the values corresponding to two kinds of meaningful
sentences that is of truth (t) and falsity (f ), and the third value u reserved for mean-
ingless sentences.

The tables of internal connectives have been set according to the rule: ‘every com-
pound proposition including at least one meaningless component is meaningless, in
other cases its value is determined classically.’ Consequently, the internal Bochvar logic
coincides with the weak Kleene logic.

The external ‘metalinguistic’ connectives are supposed to express the predicates 
‘. . . is true’ and ‘. . . is false’ and have the following ‘meanings’:

external nexgation: ÿ* a ‘a is false’
external implication: a Æ* b ‘if a is true, then b is true’
external disjunction: a ⁄* b ‘a is true or b is true’
external implication: a Ÿ* b ‘a is true and b is true’
external implication: a ∫* b ‘a is true iff b is true’



As a result, the external logic is a ‘three-valued’ version of the classical logic. This is
due to the fact that the truth tables of all external connectives ‘identify’ the values u
and f, whereas the behavior of these connectives with regard to f and t is classical.

7 Towards a General Framework

With a view to unification, Rosser and Turquette (1952) established some special stan-
dard conditions that make finitely many-valued logics resemble the classical proposi-
tional logic. This, on a certain level of investigation, permitted the simplification or
solving of some metalogical questions, such as axiomatization and the extension to
predicate logics.

Assume that n ≥ 2 is a natural number and 1 £ k < n. Let En = {1, 2, . . . , n} be the
set of logical values and Dk = {1, 2, . . . , k} as the set of designated values. Rosser and
Turquette assume that the natural number ordering conveys decreasing degrees of
truth. So, 1 always refers to ‘truth’ and n takes the role of falsity.

Next come the conditions concerning propositional connectives, which have to rep-
resent negation (ÿ), implication (Æ), disjunction (⁄), conjunction (Ÿ), equivalence (∫)
and special one-argument connectives j1, . . . , jn. The respective connectives satisfy the
standard conditions if for any x, y Œ En and i Œ {1, 2, . . . , n}
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a ÿ*a Æ* f u t ⁄* f u t Ÿ* f u t ∫* f u t

f t f t t t f f f t f f f f f t t f
u t u t t t u f f t u f f f u t t f
t f t f f t t t t t t f f t t f f t

Their truth tables are as follows:

ÿx Œ Dk if and only if x œ Dk

x Æ y œ Dk if and only if x Œ Dk and y œ Dk

x ⁄ y œ Dk if and only if x Œ Dk or y Œ Dk

x Ÿ y Œ Dk if and only if x Œ Dk and y Œ Dk

x ∫ y Œ Dk if and only if either x, y Œ Dk or x, y œ Dk

ji(x) Œ Dk if and only if x = i .

Any many-valued logic Ln,k having standard connectives as primitive or definable is
called standard.

The class of many-valued logics, whose connectives fulfill standard conditions is
quite large. It contains, ‘obviously,’ all Post logics since they are functionally complete.
All finite Ĺukasiewicz logics are also standard; note that the mapping f(x) = n - (n - 1)
transposes the original values {0, 1/(n - 1), 2/(n - 1), . . . , n - 2/(n - 1), 1} onto {1,
2, . . . , n}. A moment’s reflection shows that original Ĺukasiewicz disjunction and con-
junction satisfy standard conditions. In turn, the other required connectives including
j’s, ji(x) = 1 iff x = i, are definable.



Using their framework, Rosser and Turquette positively solved the problem of axiom-
atizability of known systems of many-valued logic, including n-valued Ĺukasiewicz and
Post logics. Actually, any {Æ, j1, j2, . . . , jn} – standard logic Ln,k is axiomatizable by
means of the rule MP and SUB and the following set of axioms:

A1 pÆ(qÆp)
A2 (p Æ (q Æ r)) Æ (q Æ (p Æ r))
A3 (p Æ q) Æ ((q Æ r) Æ (p Æ r))
A4 ( ji(p) Æ ( ji(p) Æ q)) Æ ( ji (p) Æ q)
A5 ( jn(p) Æ q) Æ (( jn-1(p) Æ q) (. . . Æ (( j1(p) Æ q) Æ q) . . . ))
A6 ji(p) p Æ for i = 1,2, . . . , k
A7 ji(r)(pr) Æ ( ji(r - 1) (pr-1) Æ (. . . Æ ( ji(1)(p1) Æ jf (F(p1, . . . , pr-1, pr))) . . . ))

where f = f(i(1), . . . , i(r));

symbols F and f in A7 represent, respectively, an arbitrary connective and the function
associated with it.

The first three axioms describe the properties of pure classical implication sufficient,
among others, to get the deduction theorem in its classical version. The remaining
axioms bridge, due to the properties of j connectives and of the implication, the seman-
tic and syntactic properties. Checking the soundness of the axioms is easy and is heavily
based on procedures known from classical logic. The completeness proof, however,
requires much calculation and involves a complicated induction.

8 On Quantification

Many-valued predicate calculi are usually built along the classical pattern. In that case
a first-order language with two standard quantifiers, general " and existential $, are
considered. Mostly, the starting point is the substitutional conception of quantifiers
according to which " and $ are (infinite) generalizations of conjunction and disjunc-
tion, respectively. Accordingly, for a finite domain U = {a1, a2, . . . , an}, the commuta-
tive and associative connectives of conjunction (Ÿ) and disjunction (⁄):

"xF(x) ∫U F(a1) Ÿ F(a2) Ÿ . . . Ÿ F(an)
$xF(x) ∫U F(a1) ⁄ F(a2) ⁄ . . . ⁄ F(an)

(∫U means the equivalence of the formulae at any interpretation in U, a1, a2, . . . , an

being nominal constants ascribed to the objects of the domain). In finite-valued logical
calculi constructed upon linear matrices, quantifiers are defined ‘directly’ through alge-
braic functions related to the above-mentioned connectives. Thus, for example, for finite
Ĺukasiewicz and Post logics, for any interpretation f in a domain U

f("xf(x)) = min{ f(F(a)) : a Œ U}
f($xF(x)) = max{ f(F(a)) : a Œ U}.
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For other calculi, the semantic description of quantifiers may vary. Thus, for example,
the clauses defining quantifiers in the first-order Bochvar logic should as follows:

t when f(F(a)) = t for every a Œ U
f("xF(x)) = u when f(F(a)) = u for some a Œ U

f otherwise
f when f(F(a)) = f for every a Œ U

f($xF(x)) = u when f(F(a)) = u for some a Œ U
t otherwise.

Axiomatic systems of many-valued predicate logics are usually built as extensions of
axiom systems of the grounds of propositional calculi in a similar way to classical logic,
see Rasiowa and Sikorski (1963) and Rasiowa (1974). Proofs of completeness for
finitely-valued calculi do not, in general, create difficulties. Axiomatizability of several
important calculi of this kind are assured by Rosser and Turquette’s result extending
the standard condition’s approach to quantifiers, see Rosser and Turquette (1952).

Introducing quantifiers to logics with infinitely many values in the semantical plane
may be problematic. Thus, for example, applying the above-mentioned procedure to the
N0-valued Ĺukasiewicz logic is impossible since in the case when U is infinite it may
happen that the set { f(F(a)) : a Œ U} does not contain the least or the greatest element
and therefore min and max functions cannot be used in the definition. In turn, in the
N1-valued Ĺukasiewicz logic, the interpretations of quantifiers are introduced provided
that for any interpretation in a non-empty domain U

f("xF(x)) = inf{ f(F(a)) : a Œ U}
f($xF(x)) = sup{ f(F(a)) : a Œ U},

see Mostowski (1961). However, it appeared that N1-valued predicate calculus thus
obtained is not axiomatizable, Scarpelini (1962). The problem of the completeness of
this logic appeared extremely complex and the experience gained while attempting to
constitute such a proof raised the so-called continuous model theory (see Chang and
Keisler 1966).

Rosser and Turquette (1952) invented a general theory of quantification for a class
of finitely many-valued logics. Starting from the intuition that ordinary quantifiers are
functions on the set of pairs (x, F), where x is a nominal variable and F a formula, with
values in the set of formulae, Rosser and Turquette defined a generalized quantifier as
any formula of the form:

Q(x1, x2, . . . , xm, F1, F2, . . . , Ft),

where x1, x2, . . . , xm are nominal variables and F1, F2, . . . , Ft formulae built from pred-
icates, nominal and propositional variables, and connectives.

Carnielli (1987) admits a very general class of distribution quantifiers defined using
multiple-valued matrices as functions mapping subsets of the set of logical values into
values. This ingenious construction also directly extends a standard approach to clas-
sical quantifiers.
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9 Interpretation and Justification

Scholars of the philosophical foundation of logic widely criticized many-valued con-
structions. The first was the explanation of the logical value 1/2 in Ĺukasiewicz (1920)
resorting to ‘future contingents’ and a ‘possibility’ or undetermination of the 0–1 status
of propositions. As shown by Gonseth (1941), such interpretation is incompatible with
other principles of Ĺukasiewicz. Whenever a is undetermined, so is ÿa and then a Ÿ
ÿa is undetermined. That contradicts our intuition since, independently of a’s content,
a Ÿ ÿa is false. The upshot discovers that Ĺukasiewicz interpretation neglects the
mutual dependence of some ‘possible’ propositions.

Haack (1978) analyses Ĺukasiewicz’s way of avoiding the fatalist conclusion 
derived from the assumption that the contingent statement ‘I shall be in Warsaw 
at noon on 21 December of the next year’ is either true or false in advance of the 
event. She remarks that this way of rejecting bivalence is wrong, since it depends 
on a modal fallacy of arguing from “It is necessary that (if a, then b)” to “ If a, 
then it is necessary that b.” Urquhart (1986) sees the third logical value as the set 
{0,1} of two ‘potential’ classical values of a future contingent sentence and defines 
the implication as getting all possible values of implication. Thus, for example the 
implication having 0 as antecedent always takes value 1, the implication from 
1 to {0,1} takes {0,1} as the value and the implication from {0,1} to {0,1} has 
the value {0,1}. The last point is inconsistent with the Ĺukasiewicz stipulation, since
the output has to be 1. Therefore, Urquhart claims, the Ĺukasiewicz table is wrong. 
It may be of interest that the connective derived by Urquhart is the Kleene strong 
implication.

Reichenbach (1944) argued that adoption of three-valued logic would provide a
solution to some problems raised by quantum mechanics. In order to avoid ‘causal
anomalies,’ Reichenbach presents an extended version of the Ĺukasiewicz logic, adding
further negation and implication connectives. He refers to the third logical value as
‘indeterminate’ and assigns it to anomalous statements of quantum mechanics. The
weak point of Reichenbach’s proposal is that certain laws are also classified as ‘inde-
terminate’, such as for example, the principle of energy.

The mathematical probability calculus in its simplest form resembles many-valued
logic. Ĺukasiewicz, before 1918, invented a concept of logical probability referring to
propositions and not to events, see Ĺukasiewicz (1913). The continuators tried to create
a many-valued logic within which logical probability could find a satisfactory inter-
pretation, see, for example, Zawirski (1934), Reichenbach (1935). The Reichenbach–
Zawirski theory is based on the assumption that there is a function Pr ranging over the
set of propositions of a given standard propositional language, with values from the real
interval [0,1], such that

P1 0 £ pr(p) £ 1
P2 Pr(p ⁄ ÿp) = 1
P3 Pr(p ⁄ q) = Pr(p) + Pr(q) if p and q are mutually exclusive (Pr(p Œ q) = 0)
P4 Pr(p) = Pr(q) when p and q are logically equivalent.
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Such probability, however, does not fit any ordinary extensional many-valued logic.
Identifying the logical value v(p) with the Pr(p) for Pr(p) = 1/2 from P2 and P3 we would,
for example, get that

1/2 ⁄ 1/2 = Pr(p ⁄ ÿp) = 1 and 1/2 ⁄ 1/2 = Pr(p ⁄ p) = Pr(p) = 1/2.

A very convincing interpretation of the N0-valued Ĺukasiewicz logic of Giles (1974) is
based on a dispersive physical interpretation of standard logical language. Each prime
proposition in a physical theory is associated through the rules of interpretation with
a certain experimental procedure terminating in one of the two possible outcomes, ‘yes’
and ‘no.’ The tangible meaning of a proposition is related to the observers and expressed
in terms of probability. In the case of prime propositions it is determined from the values
of probability of success ascribed by observers in respective experiment, whereas in the
case of compound propositions it is determined from the rules of obligation formulated
in the nomenclature of dialogue logic. The inductive clauses for the connectives, and
later for quantifiers, translated back to subjective probability function pr conform to the
original Ĺukasiewicz definitions. The set of tautologies of the dialogue logic, that is of
formulas to which any valuation assigns non-positive risk-value, coincides with the set
of tautologies of the infinite-valued Ĺukasiewicz logic.

Elimination of the Russell paradox was among the expectations of Ĺukasiewicz and
Bochvar. An interesting work on Ĺukasiewicz logics related to the question of the unlim-
ited consistency of the comprehension axiom, that is a first-order formula with Œ stating
the existence of all sets bearing logically expressible properties, was done. It started with
Moh Shaw Kwei’s (1954) result on the impossibility of the use of finite systems for the
purpose, and continued in the 1960s after Skolem (1957) put forward a hypothesis that
CA was consistent in N1-valued Ĺukasiewicz logic. Though several interesting results
have been obtained, the question, in its full generality, still remains open.

Scott (1973) replaces many logical values by many valuations using the truth t and
falsity f. A definite number of bivalent valuations generates a partition of the set of
propositions into types (indexes) corresponding to the original logical values – Scott
refers to them as to indexes. An n-element set of valuations can thus induce maximally
2n types. The actual number of types depends on limiting conditions imposed on valua-
tions. An accurate choice of these conditions leads to a relatively simple characteriza-
tion of the connectives of the logic under consideration. Applying his method, Scott
gets a description of the n-valued Ĺukasiewicz negation and implication connectives
through an (n - 1)-element set of valuations {v0, v1, . . . , vn-2}. The equalities of the
form ‘vi(a)’ should be read as ‘(the statement) a is true to within the degree i.’
Consequently, the numbers 0, 1, . . . , n - 2 stand for degrees of error in deviation from
the truth. Degree 0 is the strongest and corresponds to ‘perfect’ truth or no error: all
Ĺukasiewicz tautologies are schemes of the statements having 0 as their degree of error.
The measure of error of the Ĺukasiewicz implication expresses the amount of shift of
error between the degree of hypothesis and that of the conclusion.

Urquhart (1973) gave an interpretation motivated by the logic of tenses. The core
of it is the relation � between natural numbers of Sn = {0, 1, . . . , n - 2} and formulas.
‘x � a’ expresses that ‘a is true at x’ satisfies

If x � a and x £ y Œ Sn, then y � a.
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Adopting � to particular finite-valued logic requires specifying n, the language, and pro-
viding recursive conditions which establish the meaning of connectives. Accordingly,
each case results in some Kripke-style semantics with finite number of ‘reference points’
Sn. For Ĺukasiewicz and Post logics, Urquhart suggests a temporal interpretation: 0 is
the present moment and all other points of reference are future moments. A temporal
way of understanding Ĺukasiewicz negation and implication exhibits the sources of dif-
ficulties in getting plausibly intuitive interpretation of many-valued Ĺukasiewicz logic.
Urquhart eventually indicates clauses which ‘natural’ connectives of negation and
implication should satisfy.

10 Applications

Perhaps the most natural of all was the use of many-valuedness to the analysis of
vagueness, inexactness, and the paradoxes, see for example Williamson (1994). This
application finally gave an impetus to fuzzy set theory and, ultimately to the theory of
fuzzy logics, see Zadeh (1975). Zadeh (1965) defines a fuzzy set A of a given domain U
as an abstract object characterized by generalized characteristic function UA with
values in the real set [0,1]:

UA : U Æ [0,1].

The values of UA are degrees of membership of elements of U to a fuzzy set A. The
extreme values denote, respectively, not belonging to A and the entire membership of
A. So, an ordinary set is a special fuzzy set, having only 0 and 1 as possible degrees of
membership.

Fuzzy sets model inexact predicates appearing in natural languages. The values of
generalized characteristic functions are logical values of propositions obtained from the
predicates serving as a basis for a given fuzzy set. Consequently, with fuzzy set algebra
of fuzzy (sub)sets of a given domain U can be associated with an uncountable many-
valued logic. The inclusion and the operations of a (fuzzy) complement –, union » , and
intersection « are then stated by means of ‘generalized’ set-theoretic predicate Œ and
logical constants (implication, negation, disjunction, and conjunction, respectively).

The choice of the basic logic is to a great extent prejudiced. It occurred that the N1-
valued logic of Ĺukasiewicz is appropriate and it still remains favorite in the field. The
early accounts yielded the (first) understanding of the term ‘fuzzy logic’ as a certain
class of infinitely-valued logics, with Ĺukasiewicz logics in the foreground.

A typical case of modeling an inexact predicate within the above framework is the
following attempt of modeling the classical paradox of a bald man. Let us take the two
following, intuitively acceptable, propositions:

(1) A man with 20,000 hairs on his head is not bald
(2) A man who has one hair less than somebody who is not bald is not bald as 

well.

Applying the detachment rule 20,000, we get, by (1) and (2), that a man with no hair
is not bald either. The paradox will vanish when the logical value of any proposition ‘A
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man with n hair is not bald’ is identified with the degree of membership of a man with
n hairs to a fuzzy set ‘not-bald.’ Then, (2) will have a logical value less than 1, say 1 -
e, where e > 0. And, if in basic logic we use L¢ ukasiewicz’s implication. Then as a result
of 20,000 derivations we will obtain a proposition of the logical value amounting to 
1 - 20,000e, thus practically false.

Zadeh’s (1975) conception of a fuzzy logic conveyed the belief that thinking in terms
of fuzzy sets is a typical feature of human perception. Fuzzy logic identifies predicates
with fuzzy subsets of a given universe and logical values with fuzzy subsets of the set
of values of the basic logic. The logical values are labeled linguistic entities and, simi-
larly as predicates, may be modified by the so-called hedges. Finally, the procedure of lin-
guistic approximation compensates for the lack of closure of the object language and
the closure of the set of logical values onto logical connectives. Fuzzy logic is now an
autonomic discipline. It seeks to formulate several rules of approximate inference.

Zadeh’s fuzzy approach has found its place among accepted methods of artificial
intelligence, in computer science and steering theory. It confirmed its usefulness due to
reliable applications; see Turner (1984).

The use of many-valued matrices to the formalization of intensional functions, the
matrix approximation of syntactically founded non-classical logics and the testing of
independence of axioms are worth mentioning. The first use was already suggested by
Ĺukasiewicz, who insisted on the formalization of possibility and necessity within the
three-valued logic (see Section 2) and several years later proposed a four-valued system
of modal logic in Ĺukasiewicz (1953). This line of approach has been in some way con-
tinued since the algebraic interpretations of Ĺukasiewicz and Post logics incorporated
‘modal’ functions in a form of the Boolean-valued endomorphisms. However, from the
philosophical point of view these finite-valued interpretation of modalities have no par-
ticular value (since as already in 1940 Dugundji proved, no reasonable system of modal
logic may be finite-valued), the role of their counterparts in Post algebras occurred
which were crucial for the Computer Science applications.

Ĺoś (1948) showed that, under some reasonable assumptions, the formalization of
functions of the kind ‘John believes that p’ naturally leads to the many-valued inter-
pretation of the belief operators within the scope of the classical logic system. The
model situation considered is the case of two persons, who do not agree on all the issues,
which may be expressed in propositions. One then obtains four possible evaluations in
terms of pairs of classical logic values, that is the truth or falsity, which divides the set
of all propositions into four types (or classes) ultimately corresponding to non-classical
values. The connectives of negation and implication defined ‘naturally,’ in reference to
their classical counterparts in parallel use for every person, also behave classically.
Accordingly, we fall in the four-valued version of CPC. The shifting of approach onto
the case with more persons results in other formal many-valued interpretations of the
classical logic with additional operators. Ĺoś’s construction shows that it is possible to
get a many-valued interpretation of some special intensional functions simultaneously
adhering to the intuition of bivalence. Since many-valuedness thus received reflects
certain relation of two different arguments, a person and a proposition, it has to be clas-
sified as untypical semantic correlate.

The successful use of classical logic and Boolean algebras in switching theory and
in computer science became established. The algebraic approach enables the applica-
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tion of several techniques for the analysis, synthesis, and minimalization of multiplex
networks. And, as early as the 1950s, interests centered also on possibility of the use
of many-valued logics for similar purposes. These interests brought about the birth of
several techniques for the analysis and synthesis of electronic circuits and relays based
mainly on Moisil’s and Posts algebras, see for example Rine (1977). The practical
switchover of two oppositely oriented contacts positioned in parallel branches of a
circuit, which have to change their positions simultaneously is the simplest possible
electronic circuit to consider within a three-valued framework. Namely, there are good
reasons to drop the idealistic assumption affecting the circuit, for example using relays,
would really change the positions of both contacts instantly, that is that the circuit
would pass from state 1 to state 0. Then, obviously, we get a third state that might also
obtain. A generalization of the outlined construction for the case of any number of con-
tacts similarly results in n states. Finally, getting a description of a network composed
of such switchovers is performed using Moisil algebras, that is Ĺukasiewicz n-valued
algebras and Post algebras. The most important advantage of the many-valued
approach is the possibility of eliminating switching disturbances through the algebraic
synthesis of the networks, see, for example, Moisil (1972).

Post algebras found an important application in the systematization of theoretical
research concerning programs and higher level programming languages which
contain instruction branching programs – the constants e0, e1, . . . , en-1 of Post algebra
are then interpreted as devices which keep track of which appropriate branching con-
ditions W0, W1, . . . , Wn-1. Further to this, Post algebras of order w+ form a semantic
base for an w+-valued extension of algorithmic logic adapted to arbitrary ‘wide’ branch-
ing programs, see Rasiowa (1977).
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