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Basic design considerations

SUMMARY
This chapter reviews the reasons why sample-size considerations are important when planning a clinical

study of any type. The basic elements underlying this process including the null and alternative study

hypotheses, effect size, statistical significance level and power are described. We introduce the notation

to distinguish the population parameters we are trying to estimate from the study, from their anticipated

value at the design stage, and finally their estimated value once the study has been completed. In the

context of clinical trials, we emphasise the need for randomised allocation of subjects to treatment.

1.1 Why sample size calculations?

To motivate the statistical issues relevant to sample-size calculations, we will assume that we

are planning a two-group clinical trial in which subjects are allocated at random to one of two

alternative treatments for a particular medical condition and that a single binary endpoint

(success or failure) has been specified in advance. However, it should be emphasised that the

basic principles described, the formulae, sample-size tables and associated software included

in this book are equally relevant to a wide range of design types covering all areas of medical

research: ranging from the epidemiological, to clinical and laboratory-based studies.

Whatever the field of enquiry a well-designed study will have considered the questions posed

carefully and, what is the particular focus for us, formally estimated the required sample size

and will have recorded the supporting justification for the choice. Awareness of the import-

ance of these has led to the major medical and related journals demanding that a detailed

justification of the study size be included in any submitted article as it is a key component for

peer reviewers to consider when assessing the scientific credibility of the work undertaken.

For example, the General Statistical Checklist of the British Medical Journal, asks: ‘Was a 

pre-study calculation of study size reported?’

In any event, at a more mundane level, investigators, grant-awarding bodies and medical

product development companies will all wish to know how much a study is likely to ‘cost’ both

in terms of time and resource consumed as well as monetary terms. The projected study size

will be a key component in this ‘cost’. They would also like to be reassured that the allocated

resource will be well spent by assessing the likelihood that the study will give unequivocal

results. In addition, the regulatory authorities, including the Food and Drug Administration

(FDA 1988) in the USA and the Committee for Proprietary Medicinal Products (CPMP 1995)

in the European Union, require information on planned study size. These are encapsulated in
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2 Chapter 1

the guidelines of the International Conference on Harmonisation of Technical Requirements

for Registration of Pharmaceuticals for Human Use (1998) ICH Topic E9.

If too few subjects are involved, the study is potentially a misuse of time because realistic

medical differences are unlikely to be distinguished from chance variation. Too large a study

can be a waste of important resources. Further, it may be argued that ethical considerations

also enter into sample size calculations. Thus a small clinical trial with no chance of detect-

ing a clinically useful difference between treatments is unfair to all the patients put to the

(possible) risk and discomfort of the trial processes. A trial that is too large may be unfair if

one treatment could have been ‘proven’ to be more effective with fewer patients as, a larger

than necessary number of them has received the (now known) inferior treatment.

Providing a sample size for a study is not simply a matter of giving a single number from a

set of tables. It is, and should be, a several-stage process. At the preliminary stages, what is required

are ‘ball-park’ figures that enable the investigators to judge whether or not to start the detailed

planning of the study. If a decision is made to proceed, then the later stages are to refine the

supporting evidence for the early calculations until they make a persuasive case for the final

patient numbers chosen which is then included (and justified) in the final study protocol.

Once the final sample size is determined, the protocol prepared and approved by the 

relevant bodies, it is incumbent on the research team to expedite the recruitment processes 

as much as possible, ensure the study is conducted to the highest of standards possible and

eventually reported comprehensively.

Cautionary note

This book contains formulae for sample-size determination for many different situations. If

these formulae are evaluated with the necessary input values provided they will give sample sizes

to a mathematical accuracy of a single subject. However, the user should be aware that when

planning a study of whatever type, one is planning in the presence of considerable uncertainty

with respect to the eventual outcome. This suggests that, in the majority of applications, the

number obtained should be rounded upwards to the nearest five, 10 or even more to establish 

the required sample size. We round upwards as that would give rise to narrower confidence 

intervals, and hence more ‘convincing’ evidence.

In some cases statistical research may improve the numerical accuracy of the formulae which

depend on approximations (particularly in situations with small sample sizes resulting), but

these improvements are likely to have less effect on the subsequent subject numbers obtained

than changes in the planning values substituted into the formulae. As a consequence, we have

specifically avoided using these refinements if they are computationally intensive. In contrast,

and as appropriate, we do provide alternative methods which can easily be evaluated to give

the design team a quick check on the accuracy of their computations and some reassurance on

the output from and the tables we provide.

1.2 Design and analysis

Notation
In very brief terms the (statistical) objective of any study is to estimate from a sample the 

value of a population parameter. For example, if we were interested in the mean birth 
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Basic design considerations 3

weight of babies born in a certain locality, then we may record the weight of a selected 

sample of n babies and their mean weight G is taken as our estimate of the population mean

birth weight denoted ωPop. The Greek ω distinguished the population value from its estimate

Roman G. When planning a study, we are clearly ignorant of ωPop and neither do we have 

the data G. As we shall see later, when planning a study the investigators will usually need 

to provide some value for what ωPop may turn out to be. We term this anticipated value 

ωPlan. This value then forms (part of) the basis for subsequent sample size calculations.

However, because adding ‘Plan’ as a subscript to the, often several, parameters concerned 

in the formulae for sample sizes included in this book, makes them even more cumbersome 

it is usually omitted, so ωPlan becomes simply ω. However to help with maintaining the dis-

tinction between ‘Plan’ and ‘Population’ values of parameters we have added the subscript

‘Pop’ to the latter. Unfortunately, although making subsequent chapters easier, this rather

complicates the sections immediately below.

The randomised controlled trial
Consider, as an example, a proposed randomised trial of a placebo (control) against acupunc-

ture in the relief of pain in a particular diagnosis. The patients are randomised to receive

either placebo or acupuncture (how placebo acupuncture can be administered is clearly an

important consideration). In addition, we assume that pain relief is assessed at a fixed time

after randomisation and is defined in such a way as to be unambiguously evaluable for each

patient as either ‘success’ or ‘failure’. We assume the aim of the trial is to estimate the true 

difference δPop between the true success rate πPopA of Acupuncture and the true success rate

πPopC of Control. Thus the key (population) parameter of interest is δPop which is a composite

of the two (population) parameters πPopA and πPopC.

At the completion of the trial the Acupuncture group of patients yield a treatment success

rate pA which is an estimate of πPopA and the Control group give success rate pC which is an

estimate of πPopC. Thus, the observed difference, d = pA − pC, provides an estimate of the true

difference δPop = πPopA − πPopC.

In contrast, at the design stage of the trial one can only postulate what the size of difference

(strictly the minimum size of interest) might be and we denote this by δPlan.

The number of patients necessary to recruit to a particular study depends on:

• The anticipated clinical difference between the alternative treatments;

• The level of statistical significance, α;

• The chance of detecting the anticipated clinical difference, 1 − β.

The null and alternative hypotheses, and effect size
Null hypothesis
In our example, the null hypothesis, termed HNull, implies that acupuncture and placebo 

are equally effective or that πPopA = πPopC. Even when that null hypothesis is true, observed

differences, d = pA − pC other than zero, will occur. The probability of obtaining the observed

difference d or a more extreme one given that πPopA = πPopC can be calculated. If, under this

null hypothesis, the resulting probability or p-value was very small, then we would reject the

null hypothesis. We then conclude the two treatments do indeed differ in efficacy.
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4 Chapter 1

Alternative hypothesis
Usually in statistical significance testing, by rejecting the null hypothesis, we do not

specifically accept any alternative hypothesis and it is usual to report the range of plausible

population values with a confidence interval (CI). However, sample-size calculations are usu-

ally posed in a hypothesis test framework, and this requires us to specify an alternative

hypothesis, termed HAlt, that is, πPopA − πPopC = δPop with δPop ≠ 0. The value δPop is known as

the true effect size.

Establishing the effect size
Of the parameters that have to be pre-specified before the sample size can be determined, the

true effect size is the most critical and, in order to estimate sample size, one must first identify

the magnitude of the difference one wishes to detect by means of δPlan.

Sometimes there is prior knowledge that enables an investigator to anticipate what treat-

ment benefit is likely to be observed, and the role of the trial is to confirm that expectation. 

At other times it may be possible to say that, for example, only the prospect of doubling of

their median survival would be worthwhile for patients with this type of rapidly fatal disease

because the new treatment is so toxic.

One additional problem is that investigators are often optimistic about the effect of new

treatments; it can take considerable effort to initiate a trial and so, in many cases, the trial would

only be launched if the investigator is enthusiastic about the new treatment and is sufficiently

convinced about its potential efficacy. Experience suggests that as trials progress there is often

a growing realism that, even at best, the initial expectations were optimistic and there is ample

historical evidence to suggest that trials which set out to detect large treatment differences nearly

always result in ‘no significant difference was detected’. In such cases there may have been 

a true and worthwhile treatment benefit that has been missed, since the level of detectable 

differences set by the design was unrealistically high, and hence the sample size too small.

In practice a form of iteration is often used. The clinician team might offer a variety of

opinions as to what clinically useful difference will transpirearanging perhaps from the

unduly pessimistic small effect to the optimistic (and unlikely in many situations) large effect.

Sample sizes may then be calculated under this range of scenarios with corresponding patient

numbers ranging perhaps from extremely large to the relatively small. The importance of 

the clinical question, and/or the impossibility of recruiting large patient numbers may rule

out a very large trial but to conduct a small trial may leave important clinical effects not 

firmly established. As a consequence, the team may next define a revised aim maybe using a

summary derived from the original opinions, and the calculations are repeated. Perhaps the

sample size now becomes attainable and forms the basis for the definitive protocol.

There are a number of ways of eliciting useful effect sizes: a Bayesian perspective has 

been advocated by Spiegelhalter, Freedman and Parmar (1994), an economic approach by

Drummond and O’Brien (1993) and one based on patients’ perceptions rather than clinicians’

perceptions of benefit by Naylor and Llewellyn-Thomas (1994).

Test size, significance level or Type I error
The critical value we take for the p-value is arbitrary, and we denote it by α. If p-value ≤ α one

rejects the null hypothesis, conversely if p-value > α one does not reject the null hypothesis.

9781405146500_4_001.qxd  9/8/08  10:20  Page 4



Basic design considerations 5

Even when the null hypothesis is in fact true there is a risk of rejecting it and to reject the 

null hypothesis when it is true is to make a Type I error. The probability of rejecting the null

hypothesis when it is true is α. The quantity α can be referred to either as the test size,

significance level, probability of a Type I error or the false-positive error. Conventionally 

α = 0.05 is often used.

Type II error and power
The clinical trial could yield an observed difference d that would lead to a p-value > α even

though the null hypothesis is really not true, that is, πPopA truly differs from πPopC. In such 

a situation, we then fail to reject the null hypothesis when it is in fact false. This is called a 

Type II or false-negative error and the probability of this is denoted by β.

The probability of a Type II error is based on the assumption that the null hypothesis is 

not true, that is, δPop = πPopA − πPopC ≠ 0. There are clearly many possible values of δPop in 

this instance since many values other than zero satisfy this condition, and each would give a

different value for β.

The power is defined as one minus the probability of a Type II error, 1 − β. That is, ‘power’

is the probability of obtaining a ‘significant’ p-value if the null hypothesis is really false.

Conventionally a minimum power of 80% is required in a clinical trial.

One and two-sided significance tests
It is usual for most clinical trials that there is considerable uncertainty about the relative 

merits of the alternative treatments so that even when the new treatment or intervention

under test is thought for scientific reasons to be an improvement over the current standard,

the possibility that this is not the case is allowed for. For example, in the clinical trial con-

ducted by Chow, Tai, Tan et al. (2002) it was thought at the planning stage that high dose

tamoxifen would improve survival over placebo in patients with inoperable hepatocellular

carcinoma. This turned out not to be the case and, if anything, tamoxifen was detrimental to

the ultimate survival. This is not an isolated example.

Since it is plausible to assume in the acupuncture trial referred to earlier that the placebo 

is in some sense ‘inactive’ and that any ‘active’ treatment will have to perform better than the

‘inactive’ treatment if it is to be adopted into clinical practice, then the alternative hypothesis

may be that the acupuncture has an improved success rate, that is, πPopA > πPopC. This leads to

a one-sided or one-tailed statistical significance test.

On the other hand, if we cannot make this type of assumption about the new treatment 

at the design stage, then the alternative hypothesis is that πPopA and πPopC differ, that is, 

πPopA ≠ πPopC.

In general, for a given sample size, a one-sided test is more powerful than the correspond-

ing two-sided test. However, a decision to use a one-sided test should never be made after

looking at the data and observing the direction of the departure. Such decisions should be

made at the design stage and one should use a one-sided test only if it is certain that departures

in the particular direction not anticipated will always be ascribed to chance, and therefore

regarded as non-significant, however large they are. It will almost always be preferable to carry

out two-sided hypothesis tests but, if a one-sided test is to be used, this should be indicated

and justified for the problem in hand.
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Confidence intervals
Medical statisticians often point out that there is an over-emphasis on tests of significance 

in the reporting of results and they argue that, wherever possible, confidence intervals (CI)

should be quoted (see Chapter 2). The reason for this is that a p-value alone gives the reader,

who wishes to make use of the published results of a particular trial, little practical informa-

tion. In contrast, quoting an estimate of the effect with the corresponding (usually 95%)

confidence interval, enables him or her to better judge the relative efficacy of the alternative

treatments. For the purposes of this book, the associated software and in the planning

stages of the trial, discussion is easier in terms of statistical significance but nevertheless it

should be emphasised that key confidence intervals should always be quoted in the final

report of any study of whatever design.

Randomisation
As Machin and Campbell (2005) and many others point out, of fundamental importance to

the design of any clinical trial (and to all types of other studies when feasible) is the random

allocation of subjects to the options under study. Such allocation safeguards in particular

against bias in the estimate of group differences and is the necessary basis for the subsequent

statistical tests.

1.3 Practicalities

Power and significance tests
In a clinical trial, two or more forms of therapy or intervention may be compared. 

However, patients themselves vary both in their baseline characteristics at diagnosis and 

in their response to subsequent therapy. Hence in a clinical trial, an apparent difference 

in treatments may be observed due to chance alone, that is, we may observe a difference 

but it may be explained by the intrinsic characteristics of the patients themselves rather 

than ‘caused’ by the different treatments given. As a consequence, it is customary to use a

‘significance test’ to assess the weight of evidence and to estimate the probability that the

observed data could in fact have arisen purely by chance. The results of the significance test,

calculated on the assumption that the null hypothesis is true, will be expressed as a ‘p-value’.

For example, at the end of the trial if the difference between treatments is tested, then a 

p < 0.05 would indicate that so extreme an observed difference could be expected to have

arisen by chance alone less than 5% of the time, and so it is quite likely that a treatment differ-

ence really is present.

However, if only a few patients were entered into the trial then, even if there really were 

a true treatment difference, the results are less convincing than if a much larger number 

of patients had been assessed. Thus, the weight of evidence in favour of concluding that 

there is a treatment effect will be much less in a small trial than in a large one. In statistical

terms, we would say that the ‘sample size’ is too small, and that the ‘power of the test’ is 

very low.

The ‘power’ of a significance test is a measure of how likely a test is to produce a statistically

significant result, given a true difference between the treatments of a certain magnitude.

SSS
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Sample size and interpretation of significance
Suppose the results of an observed treatment difference in a clinical trial are declared ‘not 

statistically significant’. Such a statement only indicates that there was insufficient weight 

of evidence to be able to declare: ‘that the observed difference is unlikely to have arisen by

chance’. It does not imply that there is ‘no clinically important difference between the treat-

ments’ as, for example, if the sample size was too small the trial might be very unlikely to

obtain a significant p-value even when a clinically relevant difference is truly present. Hence 

it is of crucial importance to consider sample size and power when interpreting statements

about ‘non-significant’ results. In particular, if the power of the test was very low, all one can

conclude from a non-significant result is that the question of treatment differences remains

unresolved.

Estimation of sample size and power
In estimating the number of patients required for a trial (sample size), it is usual to identify a

single major outcome which is regarded as the primary endpoint for comparing treatment

differences. In many clinical trials this will be a measure such as response rate, time to wound

healing, degree of palliation, or a quality of life index.

It is customary to start by specifying the size of the difference required to be detected, and

then to estimate the number of patients necessary to enable the trial to detect this difference 

if it truly exists. Thus, for example, it might be anticipated that acupuncture could improve

the response rate from 20 to 30%, and that since this is a plausible and medically import-

ant improvement, it is desired to be reasonably certain of detecting such a difference if it 

really exists. ‘Detecting a difference’ is usually taken to mean ‘obtain a statistically significant 

difference with p-value < 0.05’; and similarly the phrase ‘to be reasonably certain’ is usually

interpreted to mean something like ‘have a chance of at least 90% of obtaining such a p-value’

if there really is an improvement from 20 to 30%. This latter statement corresponds, in 

statistical terms, to saying that the power of the trial should be 0.9 or 90%.

More than one primary outcome
We have based the above discussion on the assumption that there is a single identifiable 

end point or outcome, upon which treatment comparisons are based. However, often there 

is more than one endpoint of interest within the same trial, such as wound healing time, 

pain levels and methicillin-resistant Staphylococcus aureus (MRSA) infection rates. If one of

these endpoints is regarded as more important than the others, it can be named as the primary

endpoint and sample-size estimates calculated accordingly. A problem arises when there 

are several outcome measures which are all regarded as equally important. A commonly

adopted approach is to repeat the sample-size estimates for each outcome measure in turn,

and then select the largest number as the sample size required to answer all the questions 

of interest.

Here, it is essential to note the relationship between significance tests and power as it is well

recognised that p-values become distorted if many endpoints (from the same patients) are

each tested for significance. Often a smaller p-value will be considered necessary for statistical

significance to compensate for this. In such cases, the sample-size calculations will use the

reduced test size and hence increase the corresponding study size.
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Internal pilot studies
In order to calculate the sample size for a trial one must first have available some background

information. For example, for a trial using a survival endpoint one must provide the anti-

cipated survival of the control group. Also, one must have some idea as to what is a realistic

difference to seek. Sometimes such information is available as rather firm prior knowledge

from the work of others, at other times, a pilot study may be conducted to obtain the relevant

information.

Traditionally, a pilot study is a distinct preliminary investigation, conducted before

embarking on the main trial but several authors, including Browne (1995), have advocated

the use of an internal pilot study. The idea here is to plan the clinical trial on the basis of the

best (current) available information, but to regard the first patients entered as the internal

pilot. When data from these patients have been collected, the sample size can be re-estimated

with the revised knowledge that the data from these first patients have provided. Two vital

features accompany this approach: firstly, the final sample size should only ever be adjusted

upwards, never down; and secondly, one should only use the internal pilot information in

order to improve the design features which are independent of the treatment variable. This

second point is crucial. It means that, for example, if treatments are to be compared using a 

t-test, then a basic ingredient of the sample-size calculation will be the standard deviation

(σPlan) whose value may be amended following the pilot phase and then potentially used 

to revise upwards the ultimate sample size. No note of the observed difference (the effect)

between treatments is made so that δPlan remains unchanged in the revised calculations.

The advantage of an internal pilot is that it can be relatively largeaperhaps half of the 

anticipated patients. It provides an insurance against misjudgement regarding the baseline

planning assumptions. It is, nevertheless, important that the intention to conduct an internal

pilot study is recorded at the outset and that full details are given in the study protocol.

More than two groups
The majority of clinical trials involve a simple comparison between two interventions or

treatments. When there are more than two treatments the situation is much more com-

plicated. This is because there is no longer one clear alternative hypothesis. Thus, for 

example, with three groups, although the null hypothesis is that the population means are 

all equal, there are several potential alternative hypotheses. These include one which post-

ulates that two of the group means are equal but which differ from the third, or one that 

the means are ordered in some way. Alternatively the investigators may simply wish to 

compare all three groups, leading to three pairwise comparisons which may not all be equally

important.

One problem arising at the time of analysis is that such situations may lead to multiple

significance tests, resulting in misleading p-values. Various solutions have been proposed,

each resulting in different analysis strategies and therefore different design and sample 

size considerations. One approach that is commonly advocated is to conduct an analysis of 

variance (ANOVA) or a similar global statistical test, with pairwise or other comparisons of

means only being made if the global test is significant. Another approach is to use conven-

tional significance tests but with an adjusted significance level obtained from the Bonferroni

correctionaessentially reducing the conventional test size (say, 0.05) by dividing by the 
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number of comparisons to be made. However, the simplest strategy is to adopt the approach

which regards, for example, a three-treatment groups comparison as little different from 

carrying out a series of three independent trials, and to use conventional significance tests

without adjustment as argued by Saville (1990). As a consequence, and assuming equal 

numbers of subjects per treatment arm, the sample size is first estimated for the three distinct 

trial comparisons. Then for each treatment group simply take the maximum of these as 

the sample size required.

Studies with g (> 2) groups may compare different doses of the same therapy or some 

other type of ordered treatment groups. Thus, although the null hypothesis would still be 

that all population means are equal, the alternative will now be HOrdered which is either 

μPop1 < μPop1 < . . . < μPopg or μPop1 > μPop1 > . . . > μPopg. In the simplest case, the doses may

be equally spaced either on the original or possibly a logarithmic scale, and these may allow

HOrdered to be expressed as μPop = αPop + βPop(dose). The study is then designed to estimate

the regression coefficient, βPop, and the sample size is calculated on the basis of an anticipated

value, βPlan.

A rather different situation arises with factorial designs. Suppose that a 2 × 2 factorial 

trial is planned to compare two factors, A and B each of two levels, then there will be four

groups to be compared with m subjects per group. The design may be particularly useful in

circumstances where (say) factor A addresses a major therapeutic question, while factor B

poses a more secondary one. For example, A might be the addition of a further drug to an

established combination chemotherapy for a cancer while B may the choice of anti-emetic

delivered with the drugs. For efficient use of such a design the two main effects, that is the 

different options within A and those within B, are compared using two means with 2m

subjects in each group. However, this assumes an absence of interaction between the 

factors which means that the effect of A remains the same irrespective of which of the options

within B the patient receives and vice-versa. If this is not the case, we might then wish to 

estimate the size of this interaction effect and so have a sufficiently large sample size for 

this purpose.

In planning a 2 × 2 factorial trial, the first step would be to assume no interaction was 

present and consider the sample size for factor A. The second step would be to consider the

sample size for factor B which may have a different effect size, test size and power, from the

factor A comparison. Clearly, if the resulting sample sizes are similar then there is no difficulty

in choosing, perhaps the larger, as the required sample size. If the sample sizes are very dis-

parate then a discussion would ensue as to the most important comparison and perhaps a 

reasonable compromise reached. This compromise figure could then be used to check what

magnitude of interaction (if present) could be detected with such numbers and may have 

to be increased if there is a strong possibility of an interaction being present.

Rules of thumb
Although we provide in later chapters methods of determining sample sizes in a variety of

contexts, it is often very useful (especially at initial planning meetings) to have a ‘feel’ of the

order of magnitude of the sample size that may ultimately be required. Thus some ‘rules of

thumb’ are given in the appropriate chapters for this purpose while Van Belle (2002) provides

a more comprehensive review.
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1.4 Use of tables and software

It is hoped that the tables and the associated software will prove useful in a number 

of ways.

Number of subjects
Before conducting a clinical trial to test the value of acupuncture a researcher believes that 

the placebo group will yield a response rate of 30%. How many subjects are required to

demonstrate an anticipated response rate for acupuncture of 70% at a given significance 

level and power?

Power of a study
A common situation is one where the number of patients is governed by forces such as time,

money, human resources and disease incidence rather than by purely scientific criteria. The

researcher may then wish to know what probability he or she has of detecting a certain differ-

ence in treatment efficacy with a trial of the intended size.

Size of effect
In this case, the sample size is constrained, and the researcher is interested in exploring the

size of effects which could be established for a reasonable power, say, 80%.

1.5 The protocol

As we have indicated the justification of sample size in any study is important. This not only

gives an indication of the resources required but also forces the research team to think about

issues of design carefully. We give below examples of how the resulting calculations were

justified.

Example 1.1bsurgical resection for patients with gastric cancer

Cuschieri, Weeden, Fielding et al. (1999) compared two forms of surgical resection for

patients with gastric cancer. The primary outcome (event of interest) was time to death. The

authors state:

‘Sample size calculations were based on a pre-study survey of 26 gastric surgeons, which

indicated that the baseline 5-year survival rate of D1 surgery was expected to be 20%,

and an improvement in survival to 34% (14% change) with D2 resection would be a

realistic expectation. Thus 400 patients (200 in each arm) were to be randomised,

providing 90% power to detect such a difference with p-value < 0.05’.

Example 1.2bsteroid or cyclopsporine for oral lichen planus

The protocol of March 1998 of the subsequently published trial conducted by Poon, Goh,

Kim et al. (2006) to compare steroid with cyclosporine for the topical treatment of oral lichen

planus stated:

SSS
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‘It is anticipated that in patients taking topical steroids, the response rate at 1 month 

will be approximately 60%. It is anticipated that this may be raised to as much as 80% 

in those receiving cyclosporine. With two-sided test size 5%, power 80%, then the

corresponding number of patients required is approximately 200 (Machin, Campbell,

Fayers and Pinol 1997, Table 3.1).’

Example 1.3bsequential hormonal therapy in advanced and metastatic breast cancer

Iaffaioli, Formato, Tortoriello et al. (2005) conducted two Phase II trials of sequential 

hormonal therapy with first-line anastrozole and with second-line exemestane, in advanced

and metastatic breast cancer. This example is discussed further in Chapter 17.

The authors provide their justification for sample size as follows (we just show the justifica-

tion for the anastrozole study, a similar justification was provided for the exemestane study):

‘The sample size calculation for both single-stage studies was performed as proposed 

by A’Hern (2001), this method being an exact version of the algorithm first presented

by Fleming (1982). The anastrizole evaluation required 93 subjects to decide whether

the proportion of patients with a clinical benefit (P) was ≤ 50% or ≥ 65%. If the number

of patients with clinical benefit was ≥ 55, the hypothesis that P ≤ 50% was rejected with

a target error rate of 0.050 and an actual error rate of 0.048. If the number of patients

with clinical benefit was ≤ 54, the hypothesis that P ≥ 65% was rejected with a target

error rate of 0.100 and an actual error rate of 0.099.’

1.6 Books on sample-size calculations
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Marcel Dekker, New York.

Cohen J (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence

Earlbaum, New Jersey.

Lemeshow S, Hosmar DW, Klar J and Lwanga SK (1990). Adequacy of Sample Size in Health

Studies. John Wiley & Sons, Chichester.

Lipsey MW (1990). Design Sensitivity: Statistical Power for Experimental Research. Sage

Publications, London.

Machin D and Campbell MJ (2005). Design of Studies for Medical Research, John Wiley &

Sons, Chichester.

Schuster JJ (1993). Practical Handbook of Sample Size Guidelines for Clinical Trials. CRC Press, FL.

1.7 Software for sample-size calculations

Since sample-size determination is such a critical part of the design process we recommend

that all calculations are carefully checked before the final decisions are made. This is particu-

larly important for large and/or resource intensive studies. In-house checking by colleagues is

also important.
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Biostat (2001). Power & Precision: Release 2.1. Englewood, NJ.

Lenth RV (2006). Java Applets for Power and Sample Size. URL: http://www.stat.uiowa.edu/

~rlenth/Power.

National Council for Social Studies (2005). Power Analysis and Sample Size Software (PASS):

Version 2005. NCSS Statistical Software, Kaysville, UT.

SAS Institute (2004). Getting Started with the SAS Power and Sample Size Application: Version

9.1. SAS Institute, Cary, NC.

StataCorp (2007). Stata Statistical Software: Release 10. College Station, TX.

Statistical Solutions (2006). nQuery Adviser: Version 6.0. Saugus, MA.
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