
UNIT 1

Hypothesis testing and estimation

1

Aims

To understand how the methods of hypothesis testing and 
estimation complement one another when deciding whether 
there are important differences in summary statistics between 
two or more study groups.

usually reported. In hypothesis testing, a ‘null hypothesis’ 
is fi rst specifi ed, that is a hypothesis stating that there is no 
difference in the summary statistics of the study groups. In 
essence, the null hypothesis assumes that the groups that are 
being compared are drawn from the same population. An 
alternative hypothesis, which states that there is a difference 
between groups, can also be specifi ed. The P value, that is, 
the probability that the difference between the groups would 
have occurred assuming the null hypothesis was ‘true’, is then 
calculated. A P value is obtained by fi rst calculating a test sta-
tistic, such as a t-statistic or a chi-square value, which is then 
compared to a known distribution. The known distribution 
is used to determine the probability that the observed test 
statistic value (or a more extreme value) would occur, if the 
null hypothesis were true. In the following units in this book, 
the calculation and interpretation of the most commonly 
used test statistics will be explored.

A P value of less than 0.05, that is a probability of less 
than 1 chance in 20, is usually accepted as being statisti-
cally signifi cant. If a P value is less than 0.05, we accept that 
it is unlikely that a difference between groups has occurred 
by chance if the null hypothesis was true. In this situation, 
we reject the null hypothesis and accept the alternative 
hypothesis, and therefore conclude that there is a statistically 
signifi cant difference between the groups. On the other hand, 
if the P value is greater than or equal to 0.05 and therefore 
the probability with which the test statistic occurs is greater 
than 1 chance in 20, we accept that the difference between 
groups has occurred by chance. In this case, we accept 
the null hypothesis and conclude that there is no difference 
between the study groups beyond variations that can be 
attributed to sampling.

In accepting or rejecting a null hypothesis, it is  important 
to remember that the P value only provides a  probability 
value and does not provide absolute proof that the null 
hypothesis is true or false. A P value obtained from a test 
of signifi cance should only be interpreted as a measure of 
the strength of evidence against the null hypothesis.2 The 
smaller the P value, the stronger the evidence provided by 
the data that the null hypothesis can be rejected. Thus, P 
values of 0.01 or lower are conventionally regarded as being 

Learning objectives
On completion of this unit, participants will be able to:

understand and interpret    • P values;
describe the meaning of type I and II errors;   •

decide when to use a one-tailed or two-tailed test of    •

signifi cance;
estimate and interpret 95% confi dence intervals.   •

Background

In health care research, signifi cance tests are usually  conducted 
to assess whether there is evidence for a real difference in 
the summary statistics of two or more study groups. The 
summary statistic may be, for example, the mean of the out-
come measurement or a frequency rate. When comparing two 
or more groups, the probability that the difference between 
the groups has occurred by chance, which is expressed as a P 
value, is used to describe the statistical signifi cance of the fi nd-
ings. However, P values convey only part of the information 
and therefore they should be accompanied by an  estimation 
of the effect size, that is the size of the difference between the 
study groups that was found.1 The estimation, which may be 
a statistic such as the size of the mean difference between two 
groups, allows readers to assess whether the observed dif-
ference is important enough to warrant a change in current 
health care practice or to warrant further research. Reporting 
the effect size enables readers to judge whether a statistically 
signifi cant result is also a clinically important fi nding.

Hypothesis testing and P values
Most medical statistics are based on the concept of 
hypothesis testing and therefore an associated P value is 
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2   UNIT 1  Hypothesis testing and estimation

highly signifi cant because they indicate that it is highly 
unlikely that the difference between groups has occurred 
by chance. Although the cut-off point between statistical 
signifi cance and non-signifi cance is generally accepted as a 
P value of less than 0.05, it is important to remember that 
P values of 0.07 and 0.04 indicate very similar strengths 
of evidence even though a P value of 0.07 is convention-
ally regarded as being non-signifi cant and a P value of 0.04 
as being statistically signifi cant. To convey the strength 
of evidence rather than using pre-conceived arbitrary 
categories, actual P values should be reported, for example 
P = 0.04 rather than P < 0.05 and P = 0.63 rather than NS 
(not signifi cant).

In measuring between-group effects, the absolute 
magnitude of the difference between the groups and the 
direction of the effect are not conveyed by the P value. 
Thus, when P values alone are reported, the results can only 
be interpreted as probability values that indicate statistical 
signifi cance with no regard for the clinical importance of 
the result. A P value that is larger than 0.05 does not neces-
sarily mean that the treatments or the groups that are being 
compared are similar, because the P value depends on both 
the size of difference between the groups and on the sample 
size.3 By only using P values, it is not possible to answer ques-
tions of how confi dent we are, given the study results, that a 
treatment is benefi cial or has no effect, or how much better we 
expect patients to become if they receive a new treatment.4, 5 
For this, we need an estimation of the size of the effect in 
addition to signifi cance tests.

Estimation
In health care research, rather than enrolling an entire 
population in a study, which would usually be  impractical, 
a sample of the population is usually selected and then 
statistics are used to make inferences about the entire 
population. When using estimation, a summary statistic is 
calculated that describes the effect size in the sample, together 
with a margin of precision around the statistic that depends 
on the size of the sample that was enrolled. Estimation allows 
us to make judgements on the certainty, or uncertainty, of 
summary statistics calculated from a sample, and therefore 
to make inferences about the population from which the 
sample was drawn.

When comparing two study groups, estimation involves 
calculating the actual size of the difference between the 
groups in addition to a P value. A limitation in the inter-
pretation of P values is that they are heavily infl uenced 
by the sample size. Although P values provide a measure 
of the strength of evidence, they convey only a small part of 
the total information about the effectiveness of a treatment 
in  clinical research or about differences between population 
samples in epidemiological studies. In a clinical study, the 
outcome of interest may be, for example, a difference in mean 
lung function measurements or a per cent reduction in 

symptoms between groups receiving a new treatment 
compared to a standard treatment (control). These types 
of summary statistics indicate how much patients could 
expect their lung function to increase or their symptoms to 
improve if they received the new treatment compared to if 
they received the standard treatment. As such, the summary 
statistics quantify the actual effect of the new treatment in 
a way that complements the probability that the difference 
between groups arose by chance.

TAKE HOME LIST

A • P value indicates the strength of evidence against the 
null hypothesis.

A • P value of less than 0.05 indicates that there is a 
statistically signifi cant difference between the study 
groups.

Smaller • P values provide stronger evidence that the null 
hypothesis is false.

The actual • P value, for example, P = 0.04 or P = 0.56, 
should be reported.

A limitation of • P values is that they only describe a 
probability and the statistical signifi cance of a between-
group difference.

P•  values are strongly infl uenced by the sample size. The 
larger the sample size the more likely a difference between 
study groups will be statistically signifi cant.

Estimation provides an effect size between groups that • 
complements the P value.

Confi dence intervals
Confi dence intervals are important in estimation in that 
they describe the precision around a summary statistic, such 
as a difference between study groups.5 There is error in all 
estimates of effect because it is unlikely that the measured 
effect would be the same when a study is repeated in different 
random samples of the population. When different groups 
of people are sampled, variations in summary statistics occur 
simply because there is a large amount of inherent variation 
in human characteristics.

The confi dence interval provides an estimated range of 
values that is likely to include the population value. The 
interpretation of a 95% confi dence interval is that 95% of 
the confi dence intervals calculated from many different 
samples would include the true value of the summary statistic 
that occurs in the population.6 A simpler and perhaps more 
intuitive way to interpret a 95% confi dence interval is that 
we can be roughly 95% certain, or confi dent, that the true 
value of the summary statistic in the population is within 
the 95% confi dence interval calculated from a single study 
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UNIT 1  Hypothesis testing and estimation   3

sample. Thus, confi dence intervals provide an estimate of 
precision, or rather lack of precision, which can be attrib-
uted to sampling variation. In Unit 2, we explain how 95% 
confi dence intervals for differences between study groups 
are calculated and show how these intervals can be used to 
make statistical inferences about differences between groups, 
sometimes without the need for computing a P value at all.

Confi dence intervals are calculated from the standard 
error (SE), which is an estimate of the precision with which a 
summary statistic has been measured. The standard error can 
be used to calculate a 95% confi dence interval as follows:

95% confi dence interval  summary statistic  (1.96  SE)

In this calculation, the summary statistic may be a value such 
as a mean value, a percentage or an odds ratio and the SE 
is the standard error around the summary value. A critical 
value of 1.96, which is derived from the normal population 
distribution of the summary statistic, is used to compute 
95% intervals when the group or sample size is larger than 
50 participants. If the sample size is smaller than 50, a larger 
critical value than 1.96 that can be derived from a statistical 
table should be used.6

It is important to remember that a 95% confi dence 
interval only applies to populations with the same 
characteristics as the population from which the data were 
sampled.6 However, a 95% confi dence interval provides 
important information over and above the P value. This is 
especially important when the P value is greater than 0.05 
because a judgement about the clinical importance of the 
difference that has been measured can be made by  assessing 
the width of the 95% confi dence interval. As might be 
expected, the P values and confi dence intervals from any 
study are closely related to one another. In most cases, if the 
value of the null hypothesis, for example a value equal to 
0, falls within the 95% confi dence interval then the P value 
will be greater than 0.05.6

When critically appraising the literature, it is important to 
calculate 95% confi dence intervals if they are not reported. 
Although 95% confi dence intervals for mean values are 
calculated from the standard error, which describes the 
precision around the mean value, the only descriptor of 
variance that is often reported is the standard deviation 
(SD), which describes the distribution of the spread or the 
variation of the actual data points. In describing the error 
and spread around a mean value, the terms standard error 
and standard deviation have important distinctions7 and 
for this reason they are explained in more detail in Unit 6. 
To calculate 95% confi dence intervals, the standard 
deviation around a mean value can easily be converted into a 
standard error as follows:

Standard error (SE)  SD/n

where n is the sample size of the group from which the mean 
and the standard deviation were estimated.

As can be seen from the formula, the standard error 
is inversely related to the square root of the sample size. 
Thus, the standard error becomes smaller as the sample 
size increases. As the sample size becomes larger, the width 
of the 95% confi dence interval for the same effect becomes 
smaller, indicating greater certainty in the precision of the 
result. On the other hand, as the sample size becomes smaller, 
the standard error becomes larger and thus the width of 
the 95% confi dence interval becomes wider, indicating less 
certainty in the precision of the result. The above methods 
for estimating and calculating 95% confi dence intervals 
apply to all summary statistics. The calculation of standard 
errors and the 95% confi dence interval for proportions, for 
example incidence and prevalenvce rates, and for odds ratios 
are discussed in the following units.

Glossary

Term Defi nition

Null hypothesis A hypothesis stating that there is no 
difference between the study groups.

P value Probability that a difference between 
study groups would have occurred if the 
null hypothesis was true.

95% confi dence 
interval

Range in which we can be approximately 
95% certain that the true population 
value lies.

Type I and II errors
Confi dence intervals clearly show the lack of precision around 
an estimate but, when only a P value is calculated, the degree 
of uncertainty about whether the null hypothesis should 
be accepted or rejected is easily overlooked. Obviously if a 
P value is very small, say less than 0.01, then the probability 
that the groups have been sampled from the same popula-
tion is quite unlikely and we can be confi dent that there is a 
real difference. Similarly if the P value is large, say over 0.1, 
then we can be confi dent that there is no difference between 
the groups beyond sampling variation. 

When testing between-group differences, the P value is 
closely related to the sample size. Thus, the larger the sample 
size, the smaller the P value will be for the same summary 
statistic, such as a mean difference between groups. The 
P value is smaller when the sample size is large because 
the summary statistic represents a more accurate estimate of 
the true value in the population from which the sample is 
drawn. Thus, the P value depends on both the size of the sum-
mary statistic and on the sample size. Therefore it is important 
to consider how the clinical importance of a difference (that 
is, the actual magnitude of the difference between groups) 
compares with the statistical signifi cance (that is, the P value 
which is dependent on sample size). The decision about the 
size of difference between groups that is considered clinically 
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4   UNIT 1  Hypothesis testing and estimation

resources will also be wasted. If the sample size is too large, 
the study may be unethical because more participants are 
enrolled than are needed to test the study hypothesis and 
research resources will also be wasted. For these reasons, 
ethics committees often request that a statistician is consulted 
when a study is being designed to ensure that the probability 
of type I and II errors is minimised.

One-tailed and two-tailed tests of signifi cance
The calculation of a P value is infl uenced by the expected 
direction of difference between study groups, which is 
generally specifi ed as the alternative hypothesis. When the 
difference between two study groups is expected to occur 
in one direction only, for example when a group of people 
receiving one treatment could only show greater improve-
ments than a group receiving another treatment, a one-tailed 
(or one-sided) test of signifi cance is used. For one-tailed 
t-tests, the probability of the test statistic value or one more 
extreme occurring in only one direction, such as occurring 
in only the upper tail of the distribution, is calculated.

When the difference between two study groups is expected 
to occur in either direction, for example when a group of 
people receiving one treatment could show a larger or smaller 
improvement than a group receiving another treatment, 
a two-tailed (or two-sided) test of signifi cance is used. For 
two-tailed tests, the probability of the test statistic occurring 
in either the upper or lower tail of the distribution is calcu-
lated. Since one-tailed tests involve calculating the probabil-
ity using only one tail of the distribution of the test statistic, 
the P value is reduced by half so that it is more signifi cant 
than when both tails are used in a two-sided test.

important depends solely on expert knowledge and can only 
be made by health care practitioners and researchers with 
experience in the fi eld.

When accepting or rejecting a null hypothesis it is possible 
that a type I or type II error has occurred.  A ‘type I error’ 
occurs when the null hypothesis is incorrectly rejected.  That is, 
it is concluded that there is a statistically signifi cant differ-
ence between groups when no clinically important difference 
exists.  The probability of a type I error occurring is reported 
as the P value.  With a P value of 0.05, there is a chance of 5 in 
100 or 1 in 20 that the signifi cant results occurred by chance 
alone.  So for every 20 statistical tests that are conducted, one 
test will be signifi cant by chance alone.  Type I errors fre-
quently occur when data is repeatedly analysed, when there 
are multiple comparisons or multiple outcomes.

A ‘type II error’ occurs when the null hypothesis is 
incorrectly accepted. That is, it is concluded that there is no 
statistically signifi cant difference between groups when a 
clinically important difference exists. The probability of 
avoiding a type II error is referred to as the power of the 
study, that is, the probability of correctly rejecting the null 
hypothesis.  Type II errors typically occur when the sample 
size is too small for a clinically important difference to reach 
statistical signifi cance. Because both type I and II errors 
are a product of the sample size, the risk of a type I error is 
reduced when the sample size becomes smaller but the risk 
of a type II error increases.

Although the occurrence of type I and II errors is usu-
ally related to the sample size, the consequences of these two 
types of errors are very different. For example, if a type I 
error occurs in a clinical trial then a new treatment will be 
incorrectly judged to be more effective than the control 

over the control treatment even though many people who 
receive the new treatment will experience benefi cial effects.
Type I and II errors not only have clinical implications for 
interpretation of summary statistics but also have ethical 
implications. If the sample size is too small, the study may be 
unethical because too few participants are enrolled than are 
needed to test the study hypothesis, and therefore research 

Glossary

Term Defi nition

Type I error When the null hypothesis is incorrectly 
rejected. That is, a difference between 
groups is statistically signifi cant 
although a clinically important difference 
does not exist. 

Type II error When the null hypothesis is incorrectly 
accepted. That is, a difference between 
groups is not statistically signifi cant 
although a clinically important difference 
exists. 

group treatment. If the new treatment is more expensive or 
has more severe side effects, recommendation of the new 
treatment will not confer benefi t on average but will have 
an adverse impact on people to whom it is  recommended. 
On the other hand, if a type II error occurs, the new 
treatment will be incorrectly judged to have no advantage 

TAKE HOME LIST

As the sample size increases, the width of the 95% • 
confi dence interval becomes smaller, indicating greater 
certainty in the precision of the result.

Summary statistics and their 95% confi dence intervals • 
should be reported, together with P values, to indicate the 
absolute size of the difference between the groups and 
the direction of effect.

Type I and II error rates are inversely related because both • 
are infl uenced by sample size – when the risk of a type I 
error is reduced, the risk of a type II error is increased.
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UNIT 1  Hypothesis testing and estimation   5

In most health care research studies, the use of one-tailed 
tests is rarely justifi ed because we should expect that a 
result could be in either direction. It is most unusual for 
researchers to be certain about the direction of effect 
before the study is conducted and, if they were, the study 
would probably not need to be conducted at all.7 For this 
reason, one-tailed statistics are rarely used. A search of the 
abstracts published in the British Medical Journal between 
1994 and 2006 found only one study in thirteen years 
in which the results were described using a one-tailed 
signifi cance test. If a one-tailed P value is reported, the P 
value can easily be converted into a two-tailed (or two-sided) 
value by doubling its numerical value.

In the vast majority of studies, two-tailed tests of signif-
icance are used unless there is a very good reason for not 
doing so.9 In health care research, it is almost always impor-
tant to allow for the possibility that extreme results could 
occur by chance and could occur equally often in either 
direction, which in clinical trials would mean towards a ben-
efi cial or towards an adverse effect. Two-tailed tests provide 
a more conservative result than one-tailed tests in that the P 
value is higher, that is, less signifi cant. In this way, two-tailed 
tests reduce the chance that a between-group difference is 
declared statistically signifi cant in error, and thus that a new 
treatment is incorrectly accepted as being more effective than 
an existing treatment. A conservative approach is essential 
because no health care practice should be modifi ed on the 
basis of results that have arisen entirely by chance.

Reading and questions
Reprint
Berry G. Statistical signifi cance and confi dence intervals. 
Med J Aust 1986;144:618–619. (See p. 7.)

After reading Unit 1 and the reprint by Berry (1986) answer 
the following questions:

Can 95% confi dence intervals be used to infer 1 P values 
and vice versa?
When might a signifi cance test fail to detect a real effect?2 

When is the null hypothesis value outside the 95% 3 
confi dence interval?
What type of error occurs when a difference between 4 
groups is not statistically signifi cant but is large enough to 
be thought clinically important?
Who decides what size of difference between groups is 5 
clinically important?

Worked example
Set article
Logroscino G, Kang, JH, Grodstein F. Prospective study of 
type 2 diabetes and cognitive decline in women aged 
70–81 years. BMJ (Published 23 February 2004). (See p. 10.)

In the set article by Logroscino et al. (2004) the authors 
refer to Table 2 and state that “On every cognitive test, 
means baseline scores were lower for women with 
diabetes”. Review this table and decide how this conclusion 
was reached.

What statistical test was used? •

What do the authors mean by “lower”? •

Have the authors used hypothesis testing or estimation to  •

reach this conclusion?
What is the size of the difference between groups and is it  •

clinically important?
Was there a type I or type II error? •

Would you reach the same conclusion? •

Exercise

The standard deviation around each estimate in Table 2 from 
Logroscino et al. (2004) is easily converted fi rst into an SE 
and then to a 95% confi dence interval. In Table 1.1, calcu-
late the SE and 95% confi dence intervals for the participants 
with diabetes.
After completing the new estimations in Table 1.1 decide:

What factors infl uence the 95% confi dence intervals and  •

in what way?
Why are the confi dence intervals so narrow? •

Table 1.1 Mean and 95% CI cognitive scores at baseline in 1394 women with type 2 
diabetes

N Mean SD SE Lower 95% CI Upper 95% CI

TICS (8–41 points) 1394 33.2 2.9 0.08 33.1 33.4

TICS 10 word list 1394 2.0 1.9

East Boston memory 
test – immediate recall

1394 9.3 1.8

East Boston memory 
test – delayed recall

1394 8.9 2.1
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6   UNIT 1  Hypothesis testing and estimation

Next calculate the SE and 95% confi dence intervals if the 
sample comprised only 50 participants, rather than the 
enrolled number of 1394.
After completing the new estimations in Table 1.2 decide:

What happens to the 95% confi dence intervals when the  •

sample size is smaller?
Why does this happen? •

Quick quiz

Tick the correct answer for each of the following questions.

A 95% confi dence interval is:1 
the range in which a mean value falls approximately (a) 

95% of the time;
the range in which 95% of the study observations can (b) 

be expected to lie;
the range in which we are 95% certain that the true (c) 

population value lies;
the range calculated as the mean (d)  1.96 standard 

deviations and which excludes 5% of the sample.

A type II error occurs when:2 
a statistician makes an error in calculating a (a) 

P value;
an important difference between groups has a (b) P value 

that is larger than 0.05;
a clinically important effect is unlikely to have (c) 

occurred by chance;
a new treatment proves more effective than was (d) 

thought when the sample size was calculated.

Two-tailed tests of signifi cance are used because:3 
that is what statisticians recommend as standard (a) 

practice;
statisticians are often unsure of what the study results (b) 

will show;

all studies have some degree of sampling variation (c) 
that affects the results;

a new treatment could turn out to be better or worse (d) 
than the control treatment.

An estimation of the difference between study groups 4 
provides important information that is additional to a P 
value because:

it conveys the size of the difference of effect between (a) 
the groups;

it provides a more reliable summary statistic;(b) 
it conveys how well the new treatment works;(c) 
it is an essential component of evidence-based  (d) 

practice.
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Many papers in the Journal use statistical methods and one 
of the aims of the review process is to try to ensure that 
appropriate methods have been used. Often papers report 
results of comparative studies that are designed to answer 
questions such as whether one treatment is superior to 
another for a particular disease, or whether there is an 
association between some form of behaviour (for example, 
taking regular exercise or smoking) and the occurrence of 
some disease. Comparative studies are almost invariably 
carried out on a sample of individuals who are chosen from 
the population of individuals to whom it is intended to 
generalize the results. Data are collected on the sample in 
order to make inferences on the population. Valid inferences 
can only be drawn if the sample is chosen in such a way that 
it is representative of the population. Otherwise a bias could 
occur; epidemiological methods are designed to eliminate 
such biases.

Since the aim of a statistical analysis is to make  inferences, 
it is paramount to express whatever inferences that can 
be drawn in the most informative way. There are several 
methods of statistical inference, but the two that are most 
commonly used are signifi cance testing and confi dence 
interval estimation. The former is well known and is  featured 
by quoting P values. Many authors appear to be under 
the impression that a profusion of P values is necessary; 
 regrettably this impression has been bolstered in the past by 
editors of biological journals. Signifi cance testing has its place 
but, as mentioned by Healy in 1978,1 “it is widely agreed 
among statisticians (if less so among the more naive users of 
statistics) that signifi cance testing is not the be-all and end-all 
of the subject”. In this leading article I would like to discuss 
the characteristics of both methods of inference, show that a 
confi dence interval contains the result of a signifi cance test, 
but not vice versa, and suggest that confi dence intervals are 
the answers to the more interesting questions that data can 
be used to answer.

Any particular study is based on a particular sample; 
however, it is useful to imagine that the study is repeated 
with a different sample being selected each time. These 
hypothetical studies will give different results because 
they contain different individuals, and individuals vary 
in any characteristic because of biological variability. The 
differences are termed sampling variability. It follows then 
that the results that are obtained from a particular sample 

can only be taken as an approximation to the actual situation 
in the whole population. Statistical methods are concerned 
with assessing the degree of approximation and what may be 
reasonably inferred, given that a different sample would have 
produced a different result.

The methods are based on the assumption that it is a 
matter of chance which particular subjects are in the sample 
that is being studied, and the sampling variability is thus 
random variation which is determined by the laws of 
probability. Therefore, the inferences are expressed in terms 
of probability. The situation is illustrated below.

Taking a sample from the population involves sampling 
variation. As a consequence of this, inferences from the 
sample data back to the population involve uncertainty.

A statistical analysis may be thought of as asking questions 
of the data. In an investigation that compares two groups for 
the mean value of, for example, blood pressure or the preva-
lence of some disease, three questions may be posed: Is there 
a difference between the groups?; How large is the difference?; 
and How accurately is the size of the difference known?

As expressed, the fi rst question expects the answer “yes” 
or “no”; although the answer cannot be given in precisely 
these terms, it is often reduced to two possibilities. The 
appropriate methodology is the signifi cance test. The second 
question expects a numerical value to be the answer. This is 
an estimate and, as it is a single value, is referred to as a point 
estimate. In effect, the third question asks how reliable this 
point estimate is; the answer is a range of values which is 
referred to as an interval estimate or a confi dence interval.

These questions represent two approaches to inference: 
hypothesis testing and estimation. Although at fi rst sight they 
appear to be quite different, in concept they have much in 
common. Both make inferential statements about the value 
of a parameter. (A parameter is an unknown quantity which 
partly or wholly characterizes a population, for example, a 
mean or a measure of association.)

Sampling variation

Uncertainty

Population

Sample data

Inferences on population

Associate Professor of Biostatistics, School of 
Public Health and Tropical Medicine 
The University of Sydney

Peat_Unit 1_Berry.indd   7Peat_Unit 1_Berry.indd   7 6/12/2008   2:03:47 PM6/12/2008   2:03:47 PM



Originally published in MJA 1986; 144: 618–19. Reproduced with permission.

8   UNIT 1  Hypothesis testing and estimation

The signifi cance test is an appropriate technique when 
there is an a priori hypothesis to test. For the purpose of the 
statistical test this hypothesis is expressed in null form — 
such as when no difference exists between groups — and the 
test evaluates whether the data are consistent with the null 
hypothesis. If the data differ markedly from those which would 
be expected under the null hypothesis, to the extent that the 
probability of such an extreme result is low, then it is said that 
the result is statistically signifi cant. Probability is measured 
on a continuum between 0 and 1, but in signifi cance testing 
a probability is considered low if it is less than conventional 
values such as 0.05 (5%) or 0.01 (1%). A signifi cant result 
is equated with the rejection of the null hypothesis or the 
claim of a real effect. By defi nition, when the null  hypothesis 
is true, signifi cant results will occur by chance with the same 
relative frequency as the signifi cance probability. That is, 
real effects will be claimed when the null hypothesis is true; 
however, the probability of this error (type 1) is determined 
in the data analysis.

One disadvantage of a signifi cance test is that it may fail to 
detect a real effect; that is, although the null hypothesis is false, 
the evidence is not strong enough to reject it. The probability 
of this error (type II) can be controlled at the design stage 
only, by appropriate selection of the sample size, and may be 
quite large. Thus, the trap of equating non-signifi cance with 
no effect must be avoided; failure to reject the null hypothesis 
is not the same as accepting it.

In the approach of confi dence interval estimation no 
particular hypothesis is considered; rather, the emphasis 
is on estimating those values of the parameter with which 
the data are consistent. These values form a range — the 
confi dence interval. The range is calculated so that there is 
a high probability — conventionally 95% or 99% — that it 
contains the true value of the parameter.

A signifi cance test is essentially a test of whether the 
data are consistent with a specifi ed parameter value, and the 
confi dence interval contains those parameter values with 
which the data are consistent. Therefore, a 5% signifi cance test 
and a 95% confi dence interval contain some information in 
common: signifi cance implies that the null hypothesis value is 
outside the confi dence interval; non-signifi cance implies that 
the null hypothesis value is within the confi dence interval. 
However, the confi dence interval contains more information 
because it is equivalent to performing a signifi cance test for all 
values of the parameter, not just a single value. A confi dence 
interval enables a reader to see how large the effect may be, 
not simply whether it is different from zero.

The limitations of the interpretations that are provided by 
a signifi cance test may now be considered.

The difference is signifi cant. This means that there is a 
difference or, in other words, the size of the difference is 
not zero. We know no more than this. The difference may be 
large and of great importance or it may be small and of no 
practical importance. It is unsatisfactory that the test pro-
vides no way of distinguishing between these quite different 
possibilities.

The difference is not signifi cant. This means that there is 
insuffi cient evidence to enable us to conclude that there is a 
difference. So the difference may well be zero. But this is not 
the same as saying that it is zero. The true difference may be 
quite large. Again, it is unsatisfactory that this possibility is 
not addressed.

The conclusions that may be drawn from a signifi cance 
test are considered to be incomplete because it is rarely that 
one is interested solely in whether a null hypothesis is or is 
not true; indeed in many cases it may be recognized at the 
outset that the null hypothesis is unlikely to be true. Rather, 
the question is how large is the difference and is it possibly 
large enough to be important? The emphasis is on  measuring 
rather than on testing. The addition of the concept of an 
important difference to that of a null hypothesis means that 
there are four possible interpretations to an analysis: (a) the 
difference is signifi cant and large enough to be of practical 
importance; (b) the difference is signifi cant but too small 
to be of practical importance; (c) the difference is not 
signifi cant but may be large enough to be important; and 
(d) the difference is not signifi cant and also not large enough 
to be of practical importance.

The size of difference that is considered to be large enough 
to be important is a matter for debate, and genuine differ-
ences of opinion may arise. It is a medical, not a statistical, 
question, although a medical statistician who is experienced 
in the subject area could contribute to setting a value. The fact 
that agreement on a unique value may be impossible in no 
way detracts from the argument. In fact, expressing the results 
as a confi dence interval enables interpretations to be made for 
any particular value that is considered appropriate.

These possibilities are illustrated in the Figure where 
the confi dence intervals are shown. The signifi cant and 

Figure Confi dence intervals showing four possible conclusions in 
terms of statistical signifi cance and practical importance.

Difference

Important

Null
hypothesis

(a) (b)

Significant
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result

Not significant

(c) (d)

0

Peat_Unit 1_Berry.indd   8Peat_Unit 1_Berry.indd   8 6/12/2008   2:03:48 PM6/12/2008   2:03:48 PM



Originally published in MJA 1986; 144: 618–19. Reproduced with permission.

UNIT 1  Hypothesis testing and estimation   9

non-signifi cant cases are distinguished by the confi dence 
intervals that exclude or include zero respectively. The main 
point is that in each case the confi dence interval gives the 
range of possible values for the true difference. Of particular 
concern is (c). Here there may be no true difference or there 
may be a large, important difference. In other words the study 
is completely inconclusive. Such a possibility is missed by 
the simple expression “not signifi cant” with its lure of equat-
ing this falsely with “no effect”. This situation will arise with 
a study that is carried out on too small a sample and this 
is why good study design demands attention to sample size 
to try to prevent the occurrence of an inconclusive result. 
Altman found that it was common for undue emphasis 
to be placed on “negative” fi ndings from small studies,2 
while Freimen et al. noted that “negative” trials were often 
too small to constitute a fair test of therapies.3 Similarly, 
a signifi cance test will contrast (b) as signifi cant and (d) as 
not signifi cant but fails to recognize that they give essentially 
the same conclusion — that any difference is too small to be 
important.

As an example, consider some results which were obtained 
by Garraway et al. from a clinical trial for the management 
of acute stroke in the elderly.4 Of 155 patients who were 
 managed in a stroke unit, 78 were assessed as independent 
when they were discharged from the unit compared with 
49 of 152 who were managed in a medical unit. The simplest 
analysis shows that the difference between the success rates 
of the two units is signifi cant at the 1% level. Therefore, a 
genuine effect has been established. To appreciate the impor-
tance of this effect the advantage of the stroke unit may be 
measured by the difference between the two units in the 
percentage of subjects who were discharged as independent: 
50.3% − 32.2% = 18.1%. This is the point estimate. The 

accuracy of this estimate is given by its standard error (5.5) 
and the 95% confi dence limits (7.3% and 28.9%). Thus, the 
gain could be as large as 29% or as small as 7%.

Recently, Gardner and Altman have argued against the 
excessive use of hypothesis testing and urged a greater use of 
confi dence intervals.5 In an appendix to their paper they give 
methods to calculate confi dence intervals for the commonly 
occurring two-sample comparisons.

In presenting the main results of a study it is good 
practice to provide confi dence intervals rather than to restrict 
the analysis to signifi cance tests. Only by so doing can authors 
give readers suffi cient information for a proper conclusion to 
be drawn; otherwise readers have to rely upon the authors’ 
own interpretation.2 Therefore, intending authors are urged 
to express their main conclusions in confi dence interval form 
(possibly with the addition of a signifi cance test, although 
strictly that would provide no extra information). One of 
the aims of the Journal’s statistical review process will be to 
ensure that where possible this is done.
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Introduction
Several population based studies have shown that type 2 
diabetes increases the risk of dementia.1–5 Cognitive decline 
is an intermediate stage between normal ageing and 
dementia.6 As dementia may be most effectively delayed in its 

initial stages, identifying diabetes as a modifi able risk factor 
for early cognitive decline could be of major public health 
importance. Estimates in the United States indicate that 
delaying onset of dementia by one year could lead to 800 000 
fewer cases after 50 years.7

Though many investigations have examined diabetes 
in relation to early cognitive decline,5, 8–19 only one large 
prospective study has focused on women.8 Type 2 diabetes 
disproportionately affects older women and is a stronger risk 
factor for cardiovascular disease in women than in men.20 
As cardiovascular disease is an independent risk factor 
for cognitive decline, we need to determine the impact of 
diabetes on cognition in women.20 Moreover, few studies have 
evaluated the infl uence of different treatments for diabetes on 
the association between type 2 diabetes and cognition.

We assessed the associations between type 2 diabetes, 
different treatments for diabetes, and cognitive function in 
more than 16 000 women.

Abstract
Objective To examine the association of type 2 diabetes with baseline cognitive function and cognitive decline over two 
years of follow up, focusing on women living in the community and on the effects of treatments for diabetes.
Design Nurses’ health study in the United States. Two cognitive interviews were carried out by telephone during 
1995–2003.
Participants 18 999 women aged 70–81 years who had been registered nurses completed the baseline interview; to date, 
16 596 participants have completed follow up interviews after two years.
Main outcome measures Cognitive assessments included telephone interview of cognitive status, immediate and 
delayed recalls of the East Boston memory test, test of verbal fl uency, delayed recall of 10 word list, and digit span back-
wards. Global scores were calculated by averaging the results of all tests with z scores.
Results After multivariate adjustment, women with type 2 diabetes performed worse on all cognitive tests than women 
without diabetes at baseline. For example, women with diabetes were at 25–35% increased odds of poor baseline score 
(defi ned as bottom 10% of the distribution) compared with women without diabetes on the telephone interview of cogni-
tive status and the global composite score (odds ratios 1.34, 95% confi dence interval 1.14 to 1.57, and 1.26, 1.06 to 1.51, 
respectively). Odds of poor cognition were particularly high for women who had had diabetes for a long time (1.52, 1.15 
to 1.99, and 1.49, 1.11 to 2.00, respectively, for 15 years’ duration). In contrast, women with diabetes who were on 
oral hypoglycaemic agents performed similarly to women without diabetes (1.06 and 0.99), while women not using any 
medication had the greatest odds of poor performance (1.71, 1.28 to 2.281, and 1.45, 1.04 to 2.02) compared with women 
without diabetes. There was also a modest increase in odds of poor cognition among women using insulin treatment. 
All fi ndings were similar when cognitive decline was examined over time.
Conclusions Women with type 2 diabetes had increased odds of poor cognitive function and substantial cognitive decline. 
Use of oral hypoglycaemic therapy, however, may ameliorate risk.
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Methods
The nurses’ health study is a prospective cohort of 121 700 US 
female registered nurses, who were aged 30–55 years in 1976, 
when the study began. Participants’ health information has 
been updated with biennial mailed questionnaires. Over 90% 
of the original cohort have been followed up to date.

From 1995–2001, participants aged 70 years and older 
who had not had a stroke were given baseline cognitive 
assessments by telephone. Overall, 93% completed the 
interview. Interviewers were blinded to participants’ health 
status (including diabetes). For the baseline analyses of 
cognitive function, we included 18 999 women with  complete 
information on education and without type 1 diabetes, 
gestational diabetes, or unconfi rmed diabetes (see below).

The follow up cognitive assessment began about two 
years after the baseline interview. After the exclusion of the 
3% who died, calls have been attempted for 98% to date. 
Of these, 92% (n  16 596) completed the interview, 5% 
(n  967) refused, 3% (n  526) were unreachable. For 
analyses of cognitive decline, we included 16 596  participants 
who completed both assessments and excluded women in 
whom diabetes had been newly diagnosed between the 
 baseline and second interviews.

Assessment of cognitive function
Our cognitive assessment has been previously described.21 

Briefl y, we initially administered only the telephone inter-
view for cognitive status (TICS) (n  18 999)22 but gradually 
added more tests: immediate (n  18 295) and delayed recalls 
of the East Boston memory test (n  18 268), test of verbal 
fl uency (naming animals, n  18 285), digit span backwards 
(n  16 591), and delayed recall of a 10 word list (n  16 582). 
To summarise performance, we calculated a global score 
averaging results of the six tests using z scores (16 563 
women completed all six tests).

We have established high validity (r  0.81 comparing the 
global score from our telephone interview to an in-person 
exam) and high reliability (r  0.70 for two administrations 
of the TICS, 31 days apart)21 for these telephone interviews in 
highly educated women.

Ascertainment of type 2 diabetes
We identifi ed women who reported that diabetes had been 
diagnosed by a physician before the baseline cognitive 
interview. We then confi rmed reports based on responses 
to a supplementary questionnaire including complications, 
diagnostic tests, and treatment; confi rmations conformed to 
guidelines of the National Diabetes Data Group23 until 1997, 
and revised criteria of the American Diabetes Association 
from 1998.24 Validation studies found 98% concordance 
of our nurse participants’ reports of type 2 diabetes with 
medical records.25 We estimated duration of diabetes by 
subtracting date of diagnosis from date of baseline  cognitive 
interview. We obtained information on recent drug  treatment 
for diabetes from the biennial questionnaire before the 
baseline interview.

Statistical analyses
Baseline analyses—We examined the relation between type 2 
diabetes and cognitive performance by comparing “poor 
scorers” to remaining women. “Poor scorers” on the TICS 
were those who scored <31 points (a pre-established cut 
off point21); on other tests, we defi ned poor scorers as those 
below the lowest 10th centile (7 for immediate recall 
and 6 for delayed recall on Boston memory test, 11 for 
verbal fl uency test, 0 for delayed recall of the TICS 
10 words list, and 3 for digit span backwards). Multivariate 
adjusted odds ratios of a poor score and 95% confi dence 
intervals were calculated with logistic regression models. 
We also analysed scores continuously using multiple  linear 
regression to obtain adjusted differences in mean score 
between women with and without diabetes.

Analyses of cognitive decline—We used logistic regression to 
calculate odds ratios of “substantial decline,” defi ned as the 
worst 10% of the distribution of change from the baseline to 
the second interview (with cut off points for decline of 4 on 
the TICS, 6 on the category fl uency test, and 3 on the other 
tests). We also used linear regression to estimate adjusted 
mean differences in decline by diabetes status.

Potential confounding factors—Data on potential 
 confounders were identifi ed from information provided as of 
the questionnaire immediately before the baseline cognitive 
assessment. All potential confounding variables were selected 
a priori based on risk factors for cognitive function in the 
existing literature (see tables 3 and 4). In analyses of cognitive 
decline, we adjusted for baseline performance.26

Results
At baseline interview 7.3% (n  1394) of the women had type 2 
diabetes, with a mean duration of 12 years since diagnosis. 
Of the 1248 women with diabetes who completed the most 
recent questionnaire, 901 reported recent  medication for 
management of diabetes (294 (33%) insulin, 607 (67%) 
oral hypoglycaemic agents). As expected, women with 
diabetes had higher prevalence of several comorbid condi-
tions (hypertension, high cholesterol, heart disease, obesity, 
depression) than women without diabetes (table 1), and 
used hormone therapy less and drank less alcohol. On every 
cognitive test, mean baseline scores were lower for women 
with diabetes (table 2).

We focused analyses on two measures of general cogni-
tive function: the TICS and the global score (table 3). After 
we adjusted for potential confounding factors, women with 
diabetes were at 25–35% increased odds of poor baseline 
score compared with women without diabetes (odds ratio 
1.34, 95% confi dence interval 1.14 to 1.57, for TICS and 1.26, 
1.06 to 1.51, for global score). Findings were consistent when 
we examined mean differences in scores; the mean score for 
women with diabetes was lower by 0.42 points, 0.58 to 
0.27 points, on the TICS and by 0.09 units, 0.12 to 0.05 
units, on the global score compared with women without 
diabetes. Associations became stronger with longer duration 
of diabetes. For those with diabetes for  15 years the odds 
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Table 2 Mean cognitive test scores at baseline in women aged 70–81, according to type 2 diabetes. 
Figures are means (SD)

Test (range of scores) Without diabetes With diabetes

TICS (8–41 points) 33.8 (2.8) 33.2 (2.9)
TICS 10 word list—delayed (0–10 points) 2.3 (2.0) 2.0 (1.9)
Global score (4–2 standard units) 0.005 (0.6) –0.1 (0.6)
East Boston memory test—immediate recall (0–12 points) 9.4 (1.7) 9.3 (1.8)
East Boston memory test—delayed (0–12 points) 9.0 (2.0) 8.9 (2.1)
Verbal fl uency test (0–38 points) 16.9 (4.7) 16.3 (4.6)
Digit span backwards (0–12) 6.7 (2.4) 6.4 (2.4)

TICS  telephone interview of cognitive status.

Table 1 Characteristics of women aged 70–81 years, according to type 2 diabetes. Figures are percentage 
of respondents unless stated otherwise*

Without diabetes With diabetes

No of participants 17 605 1394

Mean age (years) 74.2 74.2

Masters or doctorate degree 5.8 5.0

History of hypertension 53.2 78.1

History of hypercholesterolaemia 64.0 75.5

History of heart disease 5.2 15.2

Obesity (body mass index 30 kg/m2) 15.3 38.8

Self perceived low energy (<55 in SF-36 energy-fatigue index) 13.4 24.7

Self perceived depression (<52 in SF-36 mental health index) 2.6 5.0

Current antidepressant use 5.3 7.9

Current regular aspirin use 37.8 42.0

Current regular use of other non-steroidal infl ammatory drugs 17.1 18.2

Current use of vitamin E 41.9 37.2

Current use of postmenopausal hormone 32.6 22.0

Mean (SD) age at menopause in years 48.3 (6.4) 47.7 (6.8)

Median physical activity in metabolic equivalents/week 
(25th–75th centile)

9.8 (3.2–21.9) 4.3 (1.0–14.0)

Current smoking 8.7 6.0
Median alcohol intake in g/day (25th–75th centile) 1.0 (0.0–6.4) 0.0 (0.0–0.9)

* Characteristics from questionnaire immediately before baseline cognitive test. Type 2 diabetes defi ned as 
diagnosis at any time before baseline cognitive test.

of poor cognitive performance was 50% higher than for 
women without diabetes (1.52, 1.15 to 1.99, and 1.49, 1.11 to 
2.00, respectively).

Odds of poor performance also seemed to differ across 
treatment groups (table 3). Compared with women  without 
diabetes, we found high odds of poor performance for 

women with diabetes who did not report  pharmaceutical 
treatment (1.71, 1.28 to 2.28, and 1.45, 1.04 to 2.02, respec-
tively). Those taking insulin also had modestly increased odds 
of poor cognition (1.20, 0.85 to 1.70, and 1.38, 0.97 to 1.95, 
respectively). In the more powerful analyses of mean dif-
ferences, the worst performance was among women using 
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Table 3 Diabetes, duration of diabetes, and use of medication for diabetes in women aged 70–81 in relation to baseline 
cognitive function

Odds ratio of poor cognitive 
performance (95% CI)

Mean difference in cognitive 
performance (95% CI)

% of 
women

TICS 
(n = 18 999)

Global score* 
(n = 16 563)

TICS (n = 18 999) Global score* 
(n = 16 563)

Diagnosis
No diabetes 92.7 1.00 1.00 0 0
Diabetes:
 Adjusted for age and education 7.3 1.44 

(1.24 to 1.69)
1.37 
(1.16 to 1.63)

0.55 
(0.70 to 0.41)

0.11 
(0.15 to 0.08)

 Multivariate adjusted† 7.3 1.34 
(1.14 to 1.57)

1.26 
(1.06 to 1.51)

0.42 
(0.58 to 0.27)

0.09 
(0.12 to 0.05)

Duration of diabetes (years)
No diabetes 92.7 1.00 1.00 0 0
Adjusted for age and education:
 4 1.5 1.35 

(0.97 to 1.88)
1.53 
(1.08 to 2.18)

0.37 
(0.69 to 0.06)

0.10 
(0.17 to 0.03)

 5–9 2.1 1.16 
(0.86 to 1.58)

0.91 
(0.64 to 1.31)

0.51 
(0.79 to 0.24)

0.09 
(0.15 to 0.03)

 10–14 1.6 1.59 
(1.17 to 2.16)

1.44 
(1.03 to 2.02)

0.68 
(1.00 to 0.37)

0.12 
(0.19 to 0.05)

 15 2.1 1.69 
(1.30 to 2.21)

1.68 
(1.27 to 2.24)

0.63 
(0.91 to 0.36)

0.14 
(0.21 to 0.08)

  P for trend <0.0001 <0.0001 <0.0001 <0.0001
Multivariate adjusted†:
 4 1.5 1.27 

(0.91 to 1.79)
1.48 
(1.03 to 2.11)

0.27 
(0.59 to 0.04)

0.08 
(0.16 to 0.01)

 5–9 2.1 1.10 
(0.81 to 1.50)

0.86 
(0.60 to 1.25)

0.41 
(0.69 to 0.14)

0.07 
(0.13 to 0.01)

 10–14 1.6 1.48 
(1.08 to 2.02)

1.31 
(0.93 to 1.85)

0.53 
(0.84 to 0.22)

0.09 
(0.16 to 0.02)

 15 2.1 1.52 
(1.15 to 1.99)

1.49 
(1.11 to 2.00)

0.46 
(0.73 to 0.18)

0.11 
(0.17 to 0.04)

  P for trend 0.0002 0.007 <0.0001 <0.0001

Continued

insulin (mean differences 0.40, 0.72 to 0.09, and 0.11, 
0.18 to 0.03, respectively). In contrast, those taking oral 
medications had similar odds of poor cognitive performance 
as those without diabetes (odds ratios 1.06, 0.81 to 1.37, and 
0.99, 0.74 to 1.33, respectively) and had the smallest mean 
difference in score (mean differences 0.35, 0.58 to 0.13, 
and 0.06, 0.11 to 0.01, respectively).

As cognitive impairment may be a cause rather than a 
consequence of not taking medications, we also examined 
use of medication at time of diagnosis (average of 12 years 
before cognitive assessment). However, results were similar: 
the odds ratios for poor score were 1.61, 1.19 to 2.16, and 1.43, 
1.02 to 2.00, respectively, for women with diabetes who were 

not taking medication at diagnosis compared with women 
without diabetes.

In addition, as duration of diabetes, medication use, and 
level of control are correlated we conducted additional analy-
ses to try to assess their independent effects. The results for 
duration of diabetes were largely similar after we adjusted for 
medication use, and results for medication use were largely 
unchanged after we included a term for duration in the model 
or stratifi ed by duration of  diabetes. For example, among 
women with diabetes, those not taking medication had a 
higher risk of poor cognitive performance on the TICS com-
pared with those taking oral medication both in the group 
with duration of diabetes <10 years (1.73, 1.01 to 2.98) and 
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10 years (1.90, 1.04 to 3.48). Furthermore, although we did 
not have detailed information on level of control (for example, 
data on  haemoglobin A

1c 
concentration), all results were gen-

erally unchanged when we excluded data from women with 
metabolic complications (for instance, those with severely 
uncontrolled disease).

Finally, we restricted analyses to participants who did 
not report any diffi culty with hearing (n  12 099) to reduce 
confounding by hearing status. The results were similar when 
we compared women with and without diabetes (1.45, 1.18 to 
1.78, and 1.37, 1.10 to 1.71, respectively).

Prospective analyses of decline
Although cognitive decline was measured over just a two 
year period, we observed a signifi cantly increased odds of 
substantial decline on the TICS (1.26, 1.03 to 1.54) for women 
compared with women without type 2 diabetes (table 4). 
However, we observed little overall relation between diabetes 
and decline on the global score (1.11, 0.90 to 1.37). Similarly, 

mean decline was greater among women with diabetes 
by 0.17 points (0.33 to 0.01) on the TICS but was 
comparable in the two groups on the global score (mean 
difference in decline 0.01, 0.04 to 0.03). In addition, 
qualitative relations with longer duration diabetes and use 
of medication were generally similar to those observed with 
baseline cognitive function.

Discussion
In this large prospective study of women aged 70–81 years 
with type 2 diabetes who were living in the community we 
found that they had marginally worse baseline cognitive 
performance and greater cognitive decline than women 
without diabetes. Longer duration of diabetes resulted in 
larger associations. However, women who said they were on 
hypoglycaemic treatment seemed to have a similar likelihood 
of poor cognition as women without diabetes, while women 
not taking medication for diabetes or those taking insulin had 
worse performance.

Table 3 Continued

Odds ratio of poor cognitive 
performance (95% CI)

Mean difference in cognitive 
performance (95% CI)

% of 
women

TICS 
(n = 18 999)

Global score* 
(n = 16 563)

TICS (n = 18 999) Global score* 
(n = 16 563)

Medication‡
No diabetes 92.7 1.00 1.00 0 0
Adjusted for age and education:
 Insulin 1.5 1.27 

(0.91 to 1.78)
1.48 
(1.06 to 2.08)

0.55 
(0.86 to 0.23)

0.14 
(0.20 to 0.07)

 Oral medication 3.2 1.05 
(0.82 to 1.36)

0.99 
(0.74 to 1.31)

0.40 
(0.62 to 0.18)

0.06 
(0.11 to 0.01)

 No reported treatment 1.8 1.70 
(1.28 to 2.26)

1.43 
(1.03 to 1.98)

0.42 
(0.71 to 0.13)

0.09 
(0.16 to 0.02)

Multivariate adjusted†:
 Insulin 1.5 1.20 

(0.85 to 1.70)
1.38 
(0.97 to 1.95)

0.40 
(0.72 to 0.09)

0.11 
(0.18 to 0.03)

 Oral medication 3.2 1.06 
(0.81 to 1.37)

0.99 
(0.74 to 1.33)

0.35 
(0.58 to 0.13)

0.06 
(0.11 to 0.01)

 No reported treatment 1.8 1.71 
(1.28 to 2.28)

1.45 
(1.04 to 2.02)

0.38 
(0.67 to 0.09)

0.08 
(0.15 to 0.01)

TICS  telephone interview of cognitive status.

* Global score combines TICS, test of verbal fl uency, delayed recall of TICS 10 word list, digit backwards test, immediate and 
delayed recalls of East Boston memory test.
† Adjusted for age at interview (years), highest attained education (registered nurse diploma, Bachelor’s degree, Master’s or 
Doctoral degree), history of high cholesterol (yes, no), history of high blood pressure (yes, no), use of vitamin E supplement 
(currently yes, no), age at menopause (<50, 50–52, 53 years), body mass index (<22, 22–24.9, 25–29.9, 30 kg/m2), cigarette 
smoking (current, past, never), antidepressant use (yes, no), alcohol intake (0, 1–4, 5–14, 15 g/day), use of aspirin (current use 
1–5 times/week, use 6 times/week, no), use of other NSAID (current use, no), postmenopausal hormone use (currently yes, no), 
mental health index (0–52, 52–100), and energy-fatigue index (0–54, 55–100) from SF-36.
‡ Data on medication use from questionnaire immediately before baseline cognitive assessment. Percentages do not total 100% as 
0.8% who did not respond to medication question are not presented.
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Table 4 Diabetes, duration of diabetes, use of medication for diabetes in women aged 70–81 in relation to cognitive 
decline over two years

Odds ratio of substantial decline 
(95% CI)

Mean difference in cognitive decline 
(95% CI)

% TICS 
(n = 16 596)

Global score* 
(n = 14 470)

TICS (n = 16 596) Global score* 
(n = 14 470)

Diagnosis
No diabetes 92.9 1.00 1.00 0 0
Diabetes:
 Adjusted for age and education 7.1 1.36 

(1.12 to 1.65)
1.20 
(0.97 to 1.47)

0.29 
(0.44 to 0.13)

0.03 
(0.06 to 0.00)

 Multivariate adjusted† 7.1 1.26 
(1.03 to 1.54)

1.10 
(0.89 to 1.37)

0.17 
(0.33 to 0.01)

0.01 
(0.04 to 0.02)

Duration of diabetes (years)
No diabetes 92.9 1.00 1.00 0 0
Adjusted for age and education:
 4 1.6 1.25 

(0.83 to 1.88)
0.68 
(0.40 to 1.17)

0.04 
(0.28 to 0.35)

0.05 
(0.01 to 0.12)

 5–9 2.0 1.08 
(0.74 to 1.59)

1.08 
(0.73 to 1.59)

0.10 
(0.38 to 0.18)

0.01 
(0.05 to 0.06)

 10–14 1.6 1.35 
(0.90 to 2.02)

1.53 
(1.03 to 2.27)

0.36 
(0.67 to –0.04)

0.09 
(0.15 to –0.03)

 15 1.9 1.77 
(1.27 to 2.47)

1.51 
(1.05 to 2.15)

0.68 
(0.97 to 0.40)

0.08 
(0.13 to 0.02)

  P for trend 0.0004 0.005 <0.0001 0.001
Multivariate adjusted:
 4 1.6 1.15 

(0.76 to 1.74)
0.65 
(0.38 to 1.12)

0.14 
(0.18 to 0.46)

0.07 (0.01 to 
0.13)

 5–9 2.0 1.00 
(0.68 to 1.47)

1.01 
(0.68 to 1.49)

0.01 
(0.29 to 0.27)

0.02 
(0.04 to 0.07)

 10–14 1.6 1.26 
(0.83 to 1.90)

1.40 
(0.94 to 2.09)

0.23 
(0.55 to 0.09)

0.07 
(0.13 to 0.00)

 15 1.9 1.64 
(1.17 to 2.30)

1.35 
(0.93 to 1.94)

0.54 
(0.83 to 0.25)

0.05 
(0.11 to 0.01)

  P for trend 0.005 0.05 0.0004 0.05

Continued

A major strength of our study is the large sample size for 
assessing the relations between type 2 diabetes, duration, 
treatment, and cognition. Other strengths are the prospec-
tive assessment of diabetes and potential confounders over 
25 years of follow up and the relative homogeneity of the 
sample in terms of education and access to health care, 
which should minimise confounding.

Limitations
Limitations should be considered. Firstly, as we relied on the 
women reporting their own diabetes status, we may have 
included some women with undiagnosed diabetes in the 
reference group, which could have led to underestimation 
of the true associations. However, undiagnosed diabetes 

was probably rare in these nurses. Among a random sample 
of those with no reported diabetes, plasma samples indicated 
just 2% had diagnostic signs of type 2 diabetes. Secondly, 
as in all studies of cognitive decline, there is regression to 
the mean on the repeat cognitive assessment. As women 
with type 2 diabetes had worse cognitive performance 
at baseline, regression to the mean would probably have 
attenuated the true magnitude of cognitive decline associated 
with diabetes.

In addition, there are important issues to consider in inter-
preting our fi ndings regarding pharmaceutical treatment of 
diabetes. Participants who were not taking any treatment for 
diabetes probably included a heterogeneous group of women 
with untreated diabetes and diabetes controlled through 
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Table 4 Continued

Odds ratio of substantial decline 
(95% CI)

Mean difference in cognitive decline 
(95% CI)

% TICS 
(n = 16 596)

Global score* 
(n = 14 470)

TICS (n = 16 596) Global score* 
(n = 14 470)

Medication‡
No diabetes 92.9 1.00 1.00 0 0

Adjusted for age and education:
 Insulin 1.5 1.49 

(0.99 to 2.25)
1.22 
(0.79 to 1.89)

0.59
(0.92 to 0.26)

0.08 
(0.15 to 0.01)

 Oral medication 3.1 1.12 
(0.82 to 1.51)

0.82 
(0.58 to 1.14)

0.00
(0.22 to 0.23)

0.02 (0.03 to 
0.06)

 No reported treatment 1.8 1.35 
(0.93 to 1.95)

1.67 
(1.18 to 2.37)

0.27
(0.56 to 0.03)

0.02 
(0.08 to 0.04)

Multivariate adjusted:
 Insulin 1.5 1.39 

(0.91 to 2.10)
1.08 
(0.69 to 1.68)

0.44
(0.77 to 0.11)

0.05 
(0.12 to 0.02)

 Oral medication 3.1 1.09 
(0.80 to 1.48)

0.77 
(0.54 to 1.08)

0.07
(0.16 to 0.30)

0.03 
(0.02 to 0.08)

 No reported treatment 1.8 1.31 
(0.90 to 1.90)

1.62 
(1.13 to 2.30)

0.23
(0.53 to 0.06)

0.02 
(0.08 to 0.05)

TICS  telephone interview of cognitive status.

* Global score combines TICS, test of verbal fl uency, delayed recall of TICS 10 word list, digit backwards test, immediate and 
delayed recalls of East Boston memory test.
† Adjusted for age at interview (years), highest attained education (registered nurse diploma, Bachelor’s degree, Master’s or 
Doctoral degree), history of high cholesterol (yes, no), history of high blood pressure (yes, no), use of vitamin E supplement 
(currently yes, no), age at menopause (<50, 50–52, 53 years), body mass index (<22, 22–24.9, 25–29.9, 30 kg/m2), cigarette 
smoking (current, past, never), antidepressant use (yes, no), alcohol intake (0, 1–4, 5–14, 15 g/day), use of aspirin (current use 
1–5 times/week, use 6 times/week, no), use of other NSAID (current use, no), postmenopausal hormone use (currently yes, no), 
mental health index (0–52, 52–100), and energy-fatigue index (0–54, 55–100) from SF-36.
‡ Data on medication use from questionnaire immediately before baseline cognitive assessment. Percentages do not total 100% as 
0.8% who did not respond to medication question are not presented.

diet. Diabetes that can be controlled through diet may not 
be associated with poor cognition.14 Thus, we have probably 
underestimated the effect of untreated diabetes. However, 
the increased odds of poor cognition associated with no 
treatment was similar across those with shorter and longer 
duration of diabetes (and duration is probably a good indi-
cator of prevalence of dietary control), suggesting that our 
underestimate may be minimal.

What is already known on this topic
Many epidemiological studies have shown that type 2 
diabetes increases the risk of cognitive decline, though most 
studies have been in men

Type 2 diabetes is associated with greater risk of cardiovascu-
lar disease in women than in men, and cardiovascular disease 
may increase the risk of cognitive decline

What this study adds
Women with type 2 diabetes have about 30% greater odds of 
poor cognitive function than those without diabetes, with a 
50% increase after 15 years’ of diabetes

Women with diabetes who did not report medical treatment 
had the highest risk of poor cognitive function and substan-
tial cognitive decline

Women with diabetes who reported taking oral medication 
had a similar risk of cognitive decline as women without 
diabetes

Though our fi nding that insulin treatment was associated 
with poor cognitive performance is consistent with results of 
other studies of cognition,8,14 it is diffi cult to draw conclu-
sions; people with diabetes who use insulin all have longer 
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duration of diabetes, worse control, and higher prevalence of 
hypoglycaemic attacks, rendering it hard to adjust appropri-
ately for confounding. None the less, there is growing evidence 
directly linking insulin to cognitive impairment: chronic 
hyperinsulinaemia10 and incremental increases in serum insulin 
concentration after a glucose load13 predict diminished 
cognition in the absence of diabetes or glucose intolerance. 
Moreover, insulin degrading enzyme regulates concentrations 
of both insulin and amyloid β in the brain27 and infusion of 
insulin into healthy humans increases amyloid β concentra-
tions in the cerebrospinal fl uid,28 further supporting a direct 
association between insulin and cognition.

Finally, consistent with our fi ndings of similar cognitive 
performance among women taking oral medication and 
those without diabetes, in a controlled trial of  participants 
with type 2 diabetes, Testa and Simonson noted that improved 
glucose control with oral medications resulted in better 
cognitive acuity, memory, and orientation.29 In addition, an 
observational study of Mexican-Americans with diabetes 
reported signifi cantly less cognitive decline in those with 
medical treatment than without.30 Thus, although physicians 
may avoid prescribing oral therapy for diabetes in older peo-
ple, it may be important to their cognitive health.

Conclusions
In conclusion, we found worse cognitive function and 
accelerated cognitive decline among women with type 2 
diabetes, which seemed to be ameliorated with oral 
hypoglycaemic treatment. Studies have established that, in 
apparently healthy people, even modest differences in cog-
nition result in substantially increased risks of dementia 
over several years.6 Prevention and control of type 2 diabe-
tes in women could have critically important public health 
consequences.
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