
Introduction: 
The revolution 
in biological
information

publicly, and freely, accessible
and that it can be retrieved 
and used by other researchers
in the future. Most scientific
journals require submission of
newly sequenced DNA to one
of the public databases before 
a publication can be made 
that relies on the sequence.
This policy has proved tremen-
dously successful for the pro-

gress of science, and has led to a rapid increase in the
size and usage of sequence databases.

As a measure of the rapid increase in the total
available amount of sequence data, Fig. 1.1 and
Table 1.1 show the total length of all sequences in
GenBank, and the total number of sequences in
GenBank as a function of time. Note that the vertical
scale is logarithmic and the curves appear approx-
imately as straight lines. This means that the size of
GenBank is increasing exponentially with time (see
Problem 1.1). The dotted line in the figure is a
straight-line fit to the data for the total sequence
length (the 1982 point seemed to be an outlier and
was excluded). From this we can estimate that the
yearly multiplication factor (i.e., the factor by which
the amount of data goes up each year) is about 1.6,
and that the database doubles in size every 1.4
years. All those sequencing machines are working
hard! Interestingly, the curve for the number of
sequences almost exactly parallels the curve for the
total length. This means that the typical length of
one sequence entry in GenBank has remained at
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CHAPTER

1

1.1 DATA EXPLOSIONS

In the past decade there has been an explosion in the
amount of DNA sequence data available, due to the
very rapid progress of genome sequencing projects.
There are three principal comprehensive databases
of nucleic acid sequences in the world today.
• The EMBL (European Molecular Biology Laborat-
ory) database is maintained at the European Bioin-
formatics Institute in Cambridge, UK (Stoesser et al.
2003).
• GenBank is maintained at the National Center 
for Biotechnology Information in Maryland, USA
(Benson et al. 2003).
• The DDBJ (DNA Databank of Japan) is maintained
at the National Institute of Genetics in Mishima,
Japan (Miyazaki et al. 2003).
These three databases share information and hence
contain almost identical sets of sequences. The
objective of these databases is to ensure that DNA
sequence information is stored in a way that is 

CHAPTER PREVIEW
Here we consider the rapid expansion in the amount of biological sequence data
available and compare this to the exponential growth in computer speed and
memory size that has occurred in the same period. The reader should appreciate
why bioinformatics is now essential for understanding the information con-
tained in the sequences, and for efficient storage and retrieval of the informa-
tion. We also consider some of the history of bioinformatics, and show that
many of its foundations are related to molecular evolution and population
genetics. Thus, the reader should understand what is meant by the term “bioin-
formatics” and the role of bioinformatics in relation to other disciplines.
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close to 1000. There are, of course, enormous vari-
ations in length between different sequence entries.

There is another famous exponentially increasing
curve that goes by the name of Moore’s law. Moore
(1965) noticed that the number of transistors in
integrated circuits appeared to be roughly doubling
every year over the period 1959–65. Data on the
size of Intel PC chips (Table 1.2) show that this 
exponential increase is still continuing. Looking at
the data more carefully, however, we see that the
estimate of doubling every year is rather overoptim-
istic. The chip size is actually doubling every two
years and the yearly multiplication factor is 1.4.
Although extremely impressive, this is substantially
slower than the rate of increase of GenBank (see Fig.
1.1 and Table 1.3).

What about the world’s fastest supercomputers?
Jack Dongarra and colleagues from the University of
Tennessee introduced the LINPACK benchmark,
which measures the speed of computers at solving a
complex set of linear equations. A list of the top 500
supercomputers according to this benchmark is
published twice yearly (http://www.top500.org).
Figure 1.2 shows the performance benchmark rate
of the top computer at each release of the list. Once
again, this is approximately an exponential (with
large fluctuations). The best-fit straight line has a
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Fig. 1.1 Comparison of the rate of
growth of the GenBank sequence (data
from Table 1.1) with the rate of growth
of the number of transistors in personal
computer chips (Moore’s law: data
from Table 1.2). Dashed lines are fits 
to an exponential growth law.

Year Base pairs Sequences

1982 680,338 606
1983 2,274,029 2,427
1984 3,368,765 4,175
1985 5,204,420 5,700
1986 9,615,371 9,978
1987 15,514,776 14,584
1988 23,800,000 20,579
1989 34,762,585 28,791
1990 49,179,285 39,533
1991 71,947,426 55,627
1992 101,008,486 78,608
1993 157,152,442 143,492
1994 217,102,462 215,273
1995 384,939,485 555,694
1996 651,972,984 1,021,211
1997 1,160,300,687 1,765,847
1998 2,008,761,784 2,837,897
1999 3,841,163,011 4,864,570
2000 11,101,066,288 10,106,023
2001 15,849,921,438 14,976,310
2002 28,507,990,166 22,318,883

Data obtained from http://
www.ncbi.nih.gov/Genbank/genbankstats.html.

Table 1.1 The growth of GenBank.
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doubling time of 1.04 years. So supercomputers
seem to be beating GenBank for the moment.
However, most of us do not have access to a super-
computer. The PC chip size may be a better measure
of the amount of computing power available to any-
one using a desktop.

Clearly, we have reached a point where com-
puters are essential for the storage, retrieval, and
analysis of biological sequence data. However, we
cannot simply rely on computers and stop thinking.
If we stick with our same old computing methods,
then we will be limited by the hardware. We still

need people, because only people can think of better
and faster algorithms for data analysis. That is what
this book is about. We will discuss the methods and
algorithms used in bioinformatics, so that hopefully
you will understand enough to be able to improve
those methods yourself.

Another important type of biological data that is
exponentially increasing is protein structures. PDB
is a database of protein structures obtained from X-
ray crystallography and NMR experiments. From
the number of entries in PDB in successive releases,
we calculated that the doubling time for the number
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Type of processor Year of introduction Transistors

4004 1971 2,250
8008 1972 2,500
8080 1974 5,000
8086 1978 29,000
286 1982 120,000
386™ processor 1985 275,000
486™ DX processor 1989 1,180,000
Pentium® processor 1993 3,100,000
Pentium II processor 1997 7,500,000
Pentium III processor 1999 24,000,000
Pentium 4 processor 2000 42,000,000

Data obtained from Intel
(http://www.intel.com/research/silicon/mooreslaw.htm).

Table 1.2 The growth of the number
of transistors in personal computer
processors.
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Fig. 1.2 The performance of the
world’s top supercomputers using the
LINPACK benchmark (Gflops). Data
from http://www.top500.org.
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of available protein structures is 3.31 years (Table
1.3), which is considerably slower than the number
of sequences. Since the number of experimentally
determined structures is lagging further and further
behind the number of sequences, computational
methods for structure prediction are important.
Many of these methods work by looking for similar-
ities in sequence between a protein of unknown
structure and a protein of known structure, and use
this to make predictions about the unknown struc-
ture. These techniques will become increasingly
useful as our knowledge of real examples increases.

In 1995, the bacterium Haemophilus influenzae en-
tered history as the first organism to have its genome
completely sequenced. Sequencing technology has

advanced rapidly and has become increasingly auto-
mated. The sequencing of a new prokaryotic genome
has now become almost commonplace. Table 1.4
shows the progress of complete genome projects with
some historical landmarks. With the publication of
the human genome in 2001, we can now truly say
that we are in the “post-genome age”. The number
of complete prokaryotic genomes (total of archaea
plus bacteria from Table 1.4) is going through its
own data explosion. The doubling time is about 1.3
years and the yearly multiplication factor is about
1.7. For the present, complete eukaryotic genomes
are still rather few, so that the publication of each
individual genome still retains its status as a land-
mark event. It seems only a matter of time, however,
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Type of data Growth rate, r Doubling time, Yearly multiplication 
T (years) factor, R

GenBank (total sequence length) 0.480 1.44 1.62
PC chips (number of transistors) 0.332 2.09 1.39
Supercomputer speed (LINPACK benchmark) 0.664 1.04 1.94
Protein structures (number of PDB entries) 0.209 3.31 1.23
Number of complete prokaryotic genomes 0.518 1.34 1.68
Abstracts: bioinformatics 0.587 1.18 1.80
Abstracts: genomics 0.569 1.22 1.77
Abstracts: proteomics 0.996 0.70 2.71
Abstracts: phylogenetic(s) 0.188 3.68 1.21
Abstracts: total 0.071 9.80 1.07

Table 1.3 Comparison of rates of increase of several different data explosion curves.

Year Archaea Bacteria Eukaryotes Landmarks

1995 0 2 0 First bacterial genome: Haemophilus influenzae
1996 1 2 0 First archaeal genome: Methanococcus jannaschii
1997 2 4 1 First unicellular eukaryote: Saccharomyces cerevisiae
1998 1 5 1 First multicellular eukaryote: Caenorhabditis elegans
1999 1 4 1 —
2000 3 13 2 First plant genome: Arabidopsis thaliana
2001 2 24 3 First release of the human genome
2002 6 32 9 —
2003 (to July) 0 25 2 —
Total 16 111 19 —

Data from the Genomes OnLine Database (http://wit.integratedgenomics.com/GOLD/).

Table 1.4 The history of genome-sequencing projects.
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before we shall be able to draw a data explosion
curve for the number of eukaryotic genomes too.

This book emphasizes the relationship between
bioinformatics and molecular evolution. The avail-
ability of complete genomes is tremendously import-
ant for evolutionary studies. For the first time we 
can begin to compare whole sets of genes between
organisms, not just single genes. For the first time 
we can begin to study the processes that govern the
evolution of whole genomes. This is therefore an
exciting time to be in the bioinformatics area.

1.2 GENOMICS AND HIGH-
THROUGHPUT TECHNIQUES

The availability of complete genomes has opened up
a whole research discipline known as genomics.
Genomics refers to scientific studies dealing with
whole sets of genes rather than single genes. The
advances made in sequencing technology have
come at the same time as the appearance of new
high-throughput experimental techniques. One of
the most important of these is microarray techno-
logy, which allows measurement of the expression
level (i.e., mRNA concentration) of thousands of
genes in a cell simultaneously. For example, in the
case of the yeast, Saccharomyces cerevisiae, where the
complete genome is available, we can put probes for
all the genes onto one microarray chip. We can then
study the way the expression levels of all the genes
respond to changes in external conditions or the
way that they vary during the cell cycle. Complete
genomes therefore change the way that experimen-
tal science is carried out, and allow us to address
questions that were not possible before.

Another important field where high-throughput
techniques are used is proteomics. Proteomics is
the study of the proteome, i.e., the complete set of
proteins in a cell. The experimental techniques used
are principally two-dimensional gel electrophoresis
for the separation of the many different proteins in a
cell extract, and mass spectrometry for identifying
proteins by their molecular masses. Once again, the
availability of complete genomes is tremendously
important, because the masses of the proteins deter-

mined by mass spectrometry can be compared
directly to the masses of proteins expected from the
predicted position of open reading frames in the
genome.

High-throughput experiments produce large
amounts of quantitative data. This poses challenges
for bioinformaticians. How do we store information
from a microarray experiment in such a way that it
can be compared with results from other groups?
How do we best extract meaningful information
from the vast array of numbers generated? New 
statistical methods are needed to spot significant
trends and patterns in the data. This is a new area of
biological sciences where computational methods
are essential for the progress of the experimental 
science, and where algorithms and experimental
techniques are being developed side by side.

As a measure of the interest of the scientific com-
munity in genomics and related areas, let us look at
the number of scientific papers published in these
areas over the past few years. The ISI Science
Citation Index allows searches for articles published
in specific years that use specified words in their title,
keywords, or abstract. Figure 1.3 shows the num-
bers of published articles (cumulative since 1981)
for several important terms relevant to this book.
Papers using the words “genomics” and “bioinform-
atics” increase at almost exactly the same rate, 
both having yearly multiplication factors of 1.8 and
doubling times of 1.2 years. “Proteomics” is a very
young field, with no articles found prior to 1998.
The doubling time is 0.7 years: the fastest growth of
any of the quantities considered in Table 1.3.
References to “microarray” also increase rapidly.
This curve appears significantly nonlinear because
there are several different meanings for the term.
Almost all the references prior to about 1996 refer to
microarray electrodes, whereas in later years,
almost all refer to DNA microarrays for gene expres-
sion. The rate of increase of the use of DNA microar-
rays is therefore steeper than it appears in the figure.

The number of papers using both “sequence” and
“database” is much larger than those using any of the
terms considered above (although it is increasing less
rapidly). This shows how important biological data-
bases and the algorithms for searching them have
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become to the biological science community in the
past decade. The number of papers using the term
“phylogenetic” or “phylogenetics” dwarfs those using
all the other terms considered here by at least an
order of magnitude. This curve is a remarkably good
exponential, although the doubling time is fairly long
(3.7 years). Phylogenetics is a relatively old area,
where morphological studies predate the availabil-
ity of molecular sequences by several decades. The
high level of interest in the field in recent years is
largely a result of the availability of sequence data
and of new methods for tree construction. Very large
sequence data sets are now being used, and we are
beginning to resolve some of the controversial
aspects of evolutionary trees that have been argued
over for decades.

As a comparison, for all the curves in Fig. 1.3 that
refer to specific scientific terms, the figure also shows
the total number of articles in the Science Citation
Index (this curve is in millions of articles, whereas
the others are in individual articles). The total level
of scientific activity (or at least, scientific writing)
has also been increasing exponentially, and hence
we all have to read more and more in order to keep
up. This curve is an almost perfect exponential, with
a doubling time of 9.8 years. Thus, all the curves
related to the individual subjects are increasing far
more rapidly than the total accumulation of sci-
entific knowledge.

At this point you will be suitably impressed by the
importance of the subject matter of this book and
will be eager to read the rest of it!

1.3 WHAT IS BIOINFORMATICS?

Since bioinformatics is still a fairly new field, people
have a tendency to ask, “What is bioinformatics?”
Often, people seem to worry that it is not very well
defined, and tend to have a suspicious look in their
eyes when they ask. These people would never trou-
ble to ask “What is biology?” or “What is genetics?”
In fact, bioinformatics is no more difficult or more
easy to define than these other fields. Here is our
short and simple definition.

Bioinformatics is the use of computational meth-
ods to study biological data.

In case this is too short and too general for you, here
is a longer one.

Bioinformatics is:
(i) the development of computational methods for
studying the structure, function, and evolution of
genes, proteins, and whole genomes;
(ii) the development of methods for the manage-
ment and analysis of biological information arising
from genomics and high-throughput experiments.

6 l Chapter 1

10 000

1000

100

10

1994 1996 1998
Year

2000 2002 2004

Genomics
Proteomics
Microarray
Bioinformatics
Phylogenetic(s)
Sequence AND database
Total (in millions)

N
um

be
r 

of
 a

rt
ic

le
s
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scientific articles published from 1981
to the date shown that use specific 
terms in the title, keywords, or abstract.
Data from the Science Citation Index
(SCI-EXPANDED) available at 
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If that is still too short, have another look at the con-
tents list of this book to see what we think are the
most important topics that make up the field of
bioinformatics.

1.4 THE RELATIONSHIP BETWEEN
POPULATION GENETICS, MOLECULAR
EVOLUTION, AND BIOINFORMATICS

1.4.1 A little history . . .

The field of population genetics is concerned with
the variation of genes within a population. The
issues of natural selection, mutation, and ran-
dom drift are fundamental to population genetics.
Alternative versions of a gene are known as alleles.
A large body of population genetics theory is used to
interpret experimental data on allele frequency dis-
tributions and to ask questions about the behavior of
the organisms being studied (e.g., effective popula-
tion size, pattern of migration, degree of inbreeding).
Population genetics is a well-established discipline
with foundations dating back to Ronald Fisher and
Sewall Wright in the first half of the twentieth cen-
tury. These foundations predate the era of molecular
sequences. It is possible to discuss the theory of the
spread of a new allele, for example, without knowing
anything about its sequence.

Molecular evolution is a more recent discipline
that has arisen since DNA and protein sequence
information has become available. Molecular tech-
niques provide many types of data that are of great
use to population geneticists, e.g., allozymes, micro-
satellites, restriction fragment length polymorph-
isms, single nucleotide polymorphisms, human
mitochondrial haplotypes. Population geneticists
are interested in what these molecular markers tell
us about the organisms (see the many examples in
the book by Avise 1994). In contrast, the focus of
molecular evolution is on the molecules themselves,
and understanding the processes of mutation and
selection that act on the sequences. There are many
genes that have now been sequenced in a large
number of different species. This usually means that
we have a representative example of a single gene
sequence from each species. There are only a few

species for which a significant amount of information
about within-species sequence variation is available
(e.g., humans and Drosophila). The emphasis in
molecular evolution therefore tends to be on com-
parative molecular studies between species, while
population genetics usually considers variation
within a species.

The article by Zuckerkandl and Pauling (1965) 
is sometimes credited with inventing the field of
molecular evolution. This was the first time that pro-
tein sequences were used to construct a molecular
phylogeny and it set many people thinking about
biological sequences in a quantitative way. 1965
was the same year in which Moore invented his law
and in which computers were beginning to play a
significant role in science. Indeed, molecular biology
has risen to prominence in the biological sciences in
the same time frame that computers have risen to
prominence in society in general.

We might also argue that bioinformatics was
beginning in 1965. The first edition of the Atlas of
Protein Sequence and Structure, compiled by Margaret
Dayhoff, appeared in printed form in 1965. The
Atlas later became the basis for the PIR protein
sequence database (Wu et al. 2002). However, this is
stretching the point a little. The term bioinformatics
was not around in 1965, and barring a few pioneers,
bioinformatics was not an active research area at
that time. As a discipline, bioinformatics is more
recent. It arose from the recognition that efficient
computational techniques were needed to study the
huge amount of biological sequence information
that was becoming available. If molecular biology
arose at the same time as scientific computing, then
we may also say that bioinformatics arose at the
same time as the Internet. It is possible to imagine
the existence of biological sequence databases with-
out the Internet, but they would be a whole lot less
useful. Database use would be restricted to those who
subscribed to postal deliveries of database releases.
Think of that cardboard box arriving each month
and getting exponentially bigger each time. Amos
Bairoch of the Swiss Institute of Bioinformatics com-
ments (Bairoch 2000) that in 1988, the version of
their PC/Gene database and software was shipped as
53 floppy disks! For that matter, think how difficult it
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would be to submit sequences to a database if it were
not for email and the Internet.

At this point, the first author of this book starts to
feel old. Coincidentally, I also first saw the light of
day in 1965. Shortly afterwards, in 1985, I was hap-
pily writing programs with DO-loops in them for
mainframes (students who are too young to know
what mainframe computers are probably do not
need to know). In 1989, someone first showed me
how to use a mouse. I remember this clearly because
I used the mouse for the first time when I began to
write my Ph.D. thesis. It is scary to think almost all
my education is pre-mouse. Possibly even more
frightening is that I remember – it must have been in
1994 – someone explaining to our academic depart-
ment how the World-Wide Web worked and what
was meant by the terms URL and Netscape. A year
or so after that, use of the Internet had become a
daily affair for me. Now, of course, if the network is
down for a day, it is impossible to do anything at all!

1.4.2 Evolutionary foundations for bioinformatics

Let’s get back to the plot. Bioinformatics is a new dis-
cipline. Since this is a bioinformatics book, why do
we need to know about the older subjects of mole-
cular evolution and population genetics? There is 
a famous remark by the evolutionary biologist
Theodosius Dobzhansky that, “Nothing in biology
makes sense except in the light of evolution”. You
will find this quoted in almost every evolutionary
textbook, but we will not apologize for quoting it
once again. In fact, we would like to update it to,
“Nothing in bioinformatics makes sense except in
the light of evolution”. Let’s consider some examples
to see why this is so.

The most fundamental and most frequently used
procedure in bioinformatics is pairwise sequence
alignment. When amino acid sequences are aligned,
we use a scoring system, such as a PAM matrix, to
determine the score for aligning any amino acid
with any other. These scoring systems are based 
on evolutionary models. High scores are assigned 
to pairs of amino acids that frequently substitute 
for one another during protein sequence evolution.
Low, or negative, scores are assigned to pairs of

amino acids that interchange very rarely. When
RNA sequences are aligned, we often use the fact
that the secondary structure tends to be conserved,
and that pairs of compensatory substitutions occur
in the base-paired regions of the structure. Thus,
creating accurate sequence alignments of both pro-
teins and RNAs relies on an understanding of mole-
cular evolution.

If we want to know something about a particular
biological sequence, the first thing we do is search
the database to find sequences that are similar to it.
In particular, we are often interested in sequence
motifs that are well conserved and that are present
in a whole family of proteins. The logic is that im-
portant parts of a sequence will tend to be conser-
ved during evolution. Protein family databases like
PROSITE, PRINTS, and InterPro (see Chapter 5)
identify important conserved motifs in protein align-
ments and use them to assign sequences to families.
An important concept here is homology. Sequences
are homologous if they descend from a common
ancestor, i.e., if they are related by the evolutionary
process of divergence. If a group of proteins all share
a conserved motif, it will often be because all these
proteins are homologous. If a motif is very short,
however, there is some chance that it will have
evolved more than once independently (conver-
gent evolution). It is therefore important to try to
distinguish chance similarities arising from con-
vergent evolution from similarities arising from
divergent evolution. The thrust of protein family
databases is therefore to facilitate the identification
of true homologs, by making the distinction between
chance and real matches clearer.

Similar considerations apply in protein structural
databases. It is often observed that distantly related
proteins have relatively conserved structures. For
example, the number and relative positions of α
helices and β strands might be the same in two pro-
teins that have very different sequences. Occasion-
ally, the sequences are so different that it would be
very difficult to establish a relationship between them
if the structure were not known. When similar (or
identical) structures are found in different proteins,
it probably indicates homology, but the possibility of
small structural motifs arising more than once still
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needs to be considered. Another important aspect of
protein structure that is strongly linked to evolution
is domain shuffling. Many large proteins are com-
posed of smaller domains that are continuous sec-
tions of the sequence that fold into fairly well-defined
three-dimensional structures; these assemble to
form the overall protein structure. Particularly in
eukaryotes, it is found that certain domains occur in
many different proteins in different combinations
and different orders. See the ProDom database
(Corpet et al. 2000), for example. Although bioin-
formaticians will argue about what constitutes a
domain and where the boundaries between domains
lie, it is clear that the duplication and reshuffling of
domains is a very useful way of evolving new com-
plex proteins. The main message is that in order to
create reliable information resources for protein
sequences, structures, and domains, we need to
have a good understanding of protein evolution.

In recent years, evolutionary studies have also
become possible at the whole genome level. If we
want to compare the genomes of two species, it is
natural to ask which genes are shared by both
species. This question can be surprisingly hard to
answer. For each gene in the first species, we need to
decide if there is a gene in the second species that is
homologous to it. It may be difficult to detect similar-
ity between sequences from different species simply
because of the large amount of evolutionary change
that has gone on since the divergence of the species.
Most genomes contain many open reading frames
that are thought to be genes, but for which no sim-
ilar sequence can be found in other species. This is
evidence for the limitations of our current methods
as much as for the diversity generated by molecular
evolution. In cases where we are able to detect sim-
ilarity, then it can still be tough to decide which genes
are homologous. Many genomes contain families of
duplicated genes that often have slightly different
functions or different sites of expression within the
organism. Sequences from one species that are evo-
lutionarily related and that diverged from one
another due to a gene duplication event are called
paralogous sequences, in contrast to orthologous
sequences, which are sequences in different organ-
isms that diverged from one another due to the split

between the species. Duplications can occur in dif-
ferent lineages independently, so that a single gene
in one species might be homologous to a whole fam-
ily in the other species. Alternatively, if duplications
occurred in a common ancestor, then both species
should contain a copy of each member of the gene
family – unless, of course, some genes have been
deleted in one or other species. Another factor to
consider, particularly for bacteria, is that genomes
can acquire new genes by horizontal transfer of DNA
from unrelated species. This sequence comparison
can show up genes that are apparently homolog-
ous to sequences in organisms that are otherwise
thought to be extremely distantly related. A major
task for bioinformatics is to establish sets of homolog-
ous genes between groups of species, and to under-
stand how those genes got to be where they are. The
flip side of this is to be able to say which genes are
not present in an organism, and how the organism
manages to get by without them.

The above examples show that many of the ques-
tions addressed in bioinformatics have foundations
in questions of molecular evolution. A fair amount
of this book is therefore devoted to molecular evolu-
tion. What about population genetics? There are
many other books on population genetics and hence
this book does not try to be a textbook of this area.
However, there are some key points that are usually
considered in population genetics courses that we
need to consider if we are to properly understand
molecular evolution and bioinformatics. These ques-
tions concern the way in which sequence diversity is
generated in populations and the way in which new
variant sequences spread through populations. If we
run a molecular phylogeny program, for example,
we might be asking whether “the” sequence from
humans is more similar to “the” sequence from chim-
panzees or gorillas. It is important to remember 
that these sequences have diverged as a result of the
fixation of new sequence variants in the populations.
We should also not forget that the sequences we
have are just samples from the variations that exist
in each of the populations.

There are some bioinformatics areas that have a
direct link to the genetics of human populations. We
are accumulating large amounts of information
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about variant gene sequences in human popula-
tions, particularly where these are linked to hered-
itary diseases. Some of these can be major changes,
like deletions of all or part of a gene or a chromosome
region. Some are single nucleotide polymorphisms,
or SNPs, where just a single base varies at a particu-
lar site in a gene. Databases of SNPs potentially con-
tain information of great relevance to medicine and
to the pharmaceutical industry. The area of phar-
macogenomics attempts to understand the way
that different patients respond more or less well to

drug treatments according to which alleles they
have for certain genes. The hope is that drug treat-
ments can be tailored to suit the genetic profile of the
patient. However, many important diseases are not
caused by a single gene. Understanding the way that
variations at many different loci combine to affect
the susceptibility of individuals to different medical
problems is an important goal, and developing com-
putational techniques to handle data such as SNPs,
and to extract information from the data, is an
important application of bioinformatics.

10 l Chapter 1

SUMMARY
The amount of biological sequence information is
increasing very rapidly and seems to be following an
exponential growth law. Computational methods are
playing an increasing role in biological sciences. New
algorithms will be required to analyze this information
and to understand what it means. Genome sequencing
projects have been remarkably successful, and compar-
ative analysis of whole genomes is now possible. This
provides challenges and opportunities for new types of
study in bioinformatics. At the same time, several 
types of experimental methods are being developed cur-
rently that may be classed as “high-throughput”. These
include microarrays, proteomics, and structural gen-
omics. The philosophy behind these methods is to study
large numbers of genes or proteins simultaneously, rather

than to specialize in individual cases. Bioinformatics
therefore has a role in developing statistical methods for
analysis of large data sets, and in developing methods 
of information management for the new types of data
being generated.

Evolutionary ideas underlie many of the methods used
in bioinformatics, such as sequence alignments, iden-
tifying families of genes and proteins, and establishing
homology between genes in different organisms. Evolu-
tionary tree construction (i.e., molecular phylogenetics)
is itself a very large field within computational biology.
Since we now have many complete genomes, particularly
in bacteria, we can also begin to look at evolutionary
questions at the whole-genome level. This book will
therefore pay particular attention to the evolutionary
aspects of bioinformatics.
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PROBLEMS

1.1 The data explosion curves provide us with a good
way of revising some fundamental points in mathematics
that will come in handy later in the book. Now would
also be a good time to check the Mathematical appendix
and maybe have a go at the Self-test that goes with it.

For each type of data considered in this chapter, we
have a quantity N(t) that is increasing with time t, and
we are assuming that it follows the law:

N(t) = N0 exp(rt)

Here, N0 is the value at the initial time point, and r is the
growth rate. In the cases we considered, time was meas-
ured in years. We defined the yearly multiplication factor
as the factor by which N increases each year, i.e.

If the data really follow an exponential law, then this
ratio is the same at whichever time we measure it.
Another way of writing the growth law is therefore:

N(t) = N0Rt

The other useful quantity that we measured was the
doubling time T. To calculate T we require that the num-
ber after a time T is twice as large as its initial value.

= exp(rT ) = 2

Hence rT = ln(2) or T = ln(2)/r.
If any of these steps is not obvious, then you should

revise your knowledge of exponentials and logarithms.
There are some helpful pointers in the Mathematical
appendix of this book, Section M.1.

1.2 Use the data from Tables 1.1 and 1.2 and plot your
own graphs. The figures in this chapter plot N directly
against t and use a logarithmic scale on the vertical axis.
This comes out to be a straight line because:

ln(N) = ln(N0) + rt

so the slope of the line is r. The other way to do it is to
calculate ln(N) at each time point with a calculator, and

  

N T
N
( )

0

  
R

N t
N t

r  
(   )

( )
  exp( )=

+
=

1

then to plot ln(N) against t using a linear scale on both
axes. Plot the graphs both ways and make sure they look
the same.

My graph-plotting package will do a best fit of an
exponential growth law to a set of data points. This is
how the values of r were obtained in Table 1.3. However,
if your package will not do that, then you can also estim-
ate r from the ln(N) versus t graph by using a straight-
line fit. Try doing the fit to the data in both ways and
make sure that you get the same answer.

1.3 The exponential growth law arises from the as-
sumption that the rate of increase of N is proportional to
its current value. Thus the growth law is the solution of
the differential equation

Now would be a good time to make sure you under-
stand what this equation means (see Sections M.6 and
M.8 for some help).

1.4 While the assumption in 1.3 might have some plaus-
ibility for the increase in the size of a rabbit population 
(if they have a limitless food supply), there does not
seem to be a theoretical reason why the size of GenBank
or the size of a PC chip should increase exponentially. It
is just an empirical observation that it works that way.
Presumably, sooner or later all these curves will hit a
limit.

There are several other types of curve we might imag-
ine to describe an increasing function of time.
Linear increase: N(t) = A + Bt
Power law increase: N(t) = Atk (for some value of k

not equal to 1)
Logarithmic increase: N(t) = A + B ln(t)
In each case, A, B, and k are arbitrary constants that
could be obtained by fitting the curve to the data. Try to
fit the data in Tables 1.1 and 1.2 to these other growth
laws. Is it true that the exponential growth law fits better
than the alternatives?

If you had some kind of measurements that you
believed followed one of the other growth laws, how
would you plot the graph so that the points would lie on
a straight line?

  

dN
dt

rN  =
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